GOOGLE
HACKS

100 Industrial-Strength Tips & Tools

, . Tara Calishain & Rael Dornfest
O RE"_LY With a foreword by the Google Engineering Team

GOOGLE

ara Calishain and Rael Dornfest

O’REILLY*

Beijing - Cambridge - Farnham - Koin - Paris - Sebastopol « Taipei - Tokyo

Google Hacks
by Tara Calishain and Rael Dornfest

Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly & Associates books may be purchased for educational, business, or sales pro-
motional use. Online editions are also available for most titles (safari.oreilly.com). For
more information, contact our corporate/institutional sales department: (800) 998-9938
or corporate@oreilly.com.

Editor: Rael Dornfest
Production Editor: Linley Dolby
Cover Designer: Edie Freedman
Interior Designer: David Futato

Printing History:
February 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.
The association between the image of locking pliers and the topic of Google is a
trademark of O’Reilly & Associates, Inc.

The trademarks “Hacks Books™ and “The Hacks Series,” and related trade dress, are
owned by OReilly & Associates, Inc. in the United States and other countries, and may
not be used without written permission. All other trademarks are property of their
respective OWners.

Google, PageRank, AdWords, and I'm Feeling Lucky are trademarks of Google
Technology, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

ISBN: 0-596-00447-8
(€]

To our Grannies: Olivia and Miriam

Chapter 1. Searching Google

1

=l <L e R

e e e e e ek ek ek e
=T < e Y T I o I e

. Setting Preferences

. Language Tools

. Anatomy of a Search Result
. Specialized Vocabularies: Slang and Terminology
. Getting Around the 10 Word Limit

. Word Order Matters

. Repetition Matters

. Mixing Syntaxes

. Hacking Google URLs

. Hacking Google Search Forms

. Date-Range Searching

. Understanding and Using Julian Dates
. Using Full-Word Wildcards

. inurl: Versus site:

. Checking Spelling

. Consulting the Dictionary

. Consulting the Phonebook

. Tracking Stocks

. Google Interface for Translators

Contents

20.
21.
22.
23.
24.
25.
26.
27.
28.

Searching Article Archives
Finding Directories of Information
Finding Technical Definitions
Finding Weblog Commentary
The Google Toolbar

The Mozilla Google Toolbar

The Quick Search Toolbar

GAPIS

Googling with Bookmarklets

Chapter 2. Google Special Services and Collections

29.
30.
31.
32.
33.
34.
35.

Google Directory
Google Groups
Google Images
Google News
Google Catalogs
Froogle

Google Labs

Chapter 3. Third-Party Google Services

36.
37.
38.
39.
40.

XooMLe: The Google API in Plain Old XML
Google by Email

Simplifying Google Groups URLs

What Does Google Think Of...
GooglePeople

Chapter 4. Non-API Google Applications

Vi

41.
42.
43.
44.
45.
46.
47.
48.
49.

Don’t Try This at Home

Building a Custom Date-Range Search Form
Building Google Directory URLs

Scraping Google Results

Scraping Google AdWords

Scraping Google Groups

Scraping Google News

Scraping Google Catalogs

Scraping the Google Phonebook

53
54
56
59
61
63
64
68
71

73
76
78
82
84
87
88
89

102
103
105
106

108
110
111
113
115
117
121
125
128
130

Chapter 5. Introducing the Google Web API 133

50. Programming the Google Web API with Perl 142
51. Looping Around the 10-Result Limit 144
52. The SOAP::Lite Perl Module 146
53. Plain Old XML, a SOAP::Lite Alternative 150
54. NoXML, Another SOAP::Lite Alternative 154
55. Programming the Google Web API with PHP 159
56. Programming the Google Web API with Java 161
57. Programming the Google Web API with Python 163
58. Programming the Google Web API with C# and .NET 166
59. Programming the Google Web API with VB.NET 169
Chapter 6. Google Web API Applications 173
60. Date-Range Searching with a Client-Side Application 174
61. Adding a Little Google to Your Word _ 178
62. Permuting a Query 179
63. Tracking Result Counts over Time 183
64. Visualizing Google Results 187
65. Meandering Your Google Neighborhood 192
66. Running a Google Popularity Contest 199
67. Building a Google Box 207
68. Capturing a Moment in Time 210
69. Feeling Really Lucky 214
70. Gleaning Phonebook Stats 217
71. Performing Proximity Searches 222
72. Blending the Google and Amazon Web Services 225
73. Getting Random Results (On Purpose) 228
74. Restricting Searches to Top-Level Results 231
75. Searching for Special Characters 236
76. Digging Deeper into Sites 238
77. Summarizing Results by Domain 241
78. Scraping Yahoo! Buzz for a Google Search 245
79. Measuring Google Mindshare 249
80. Comparing Google Results with Those of Other Search Engines 251
81. SafeSearch Certifying URLs 255

Contents | vii

82. Syndicating Google Search Results 258

83. Searching Google Topics 259

84. Finding the Largest Page 262

85. Instant Messaging Google 265

Chapter 7. Google PranksandGames 269

86. The No-Result Search (Prank) 269

87. Google Whacking 271

88. GooPoetry 273

89. Creating Google Art 277

90. Google Bounce 279

91. Google Mirror 282

92. Finding Recipes 284

Chapter 8. The Webmaster SideofGoogle 287

93. A Webmaster’s Introduction to Google 289

94. Generating Google AdWords 293

95. Inside the PageRank Algorithm 294

96. 26 Steps to 15K a Day 298

97. Being a Good Search Engine Citizen 304

98. Cleaning Up for a Google Visit 307

99. Getting the Most out of AdWords 309

100. Removing Your Materials from Google 315

Index ... 319
vii | Contents

Credits

About the Authors

Tara Calishain is the author or co-author of half-a-dozen books about the
Internet. She’s the editor of weekly search engine newsletter ResearchBuzz
(www.researchbuzz.com) and a regular columnist for LLRX.com and
SEARCHER magazine. '

Rael Dornfest is a maven at O’Reilly & Associates, Inc., focusing on technol-
ogies just beyond the pale. He assesses, experiments, programs, and writes
for the O’Reilly Network and O’Reilly publications. Rael has edited, co-
authored, and contributed to various O’Reilly books. He is program chair
for the O’Reilly Emerging Technology Conference and O’Reilly Mac OS X
Conference, chair of the RSS-DEV Working Group, and developer of
Meerkat: An Open Wire Service (meerkat.oreillynet.com). In his copious free
time, Rael develops bits and bobs of freeware and maintains his raelity bytes
weblog (www.raelity.org).

Contributors

The following people contributed their hacks, writing, and inspiration to
this book:

* Tim Allwine is a Senior Software Engineer at O’Reilly & Associates. He
develops software for the Market Research group, various spidering
tools that collect data from disparate sites, and is involved in the devel-
opment of web services at O’Reilly.

* AvaQuest (http://www.avaquest.com/) is a Massachusetts-based IT ser-
vices firm that specializes in applying advanced information retrieval,

categorization, and text mining technologies to solve real-world prob-
lems. GooglePeople and GoogleMovies, created by AvaQuest consult-
ants Nathan Treloar, Sally Kleinfeldt, and Peter Richards, came out of a
web mining consulting project the team worked on in the summer of
2002, shortly after the Google Web API was announced.

Paul Bausch (http://www.onfocus.com/) is a freelance web developer and
author living in Oregon. He was a co-creator of the weblog software,
Blogger, and recently co-wrote a book about weblogs called We Blog:
Publishing Online with Weblogs. He believes (like Google) that “love”
(75,700,000) will conquer “hate” (7,900,000).

Erik Benson (http://www.erikbenson.com/).

CapeScience.com (http://www.capescience.com/) is the development
community for Cape Clear Software, a web services company. In addi-
tion to providing support for Cape Clear’s products, CapeScience makes
all sorts of fun web services stuff, including live services, clients to other
services, utilities, and other geekware.

Antoni Chan (http://www.alltooflat.com/) is one of the founders of All
Too Flat, a bastion of quirky content, pranks, and geeky humor. The
Google Mirror is a 2,500 line CGI script that was developed over the
period of a year starting in October 2001. When not working on his
web site, he enjoys playing music, bowling, and running after a frisbee.

Tanya Harvey Ciampi (http://www.multilingual.ch) grew up in Bucking-
hamshire, England, and went on to study in Zurich, where she obtained
her diploma in translation. She now lives in Ticino, the Italian-speaking
region of Switzerland, where she works as an English technical translator
(from Italian, German, and French) and proofreader, and teaches transla-
tion and Internet search techniques based on her WWW Search Inter-
faces for Translators. In her free time, she enjoys fishing with her father
on the west coast of Ireland, writing poems, and playing celtic music.

Peter Drayton (http://www.razorsoft.net/weblog/)is a program manager
in the CLR team at Microsoft. Before joining Microsoft, he was an inde-
pendent consultant, trainer for DevelopMentor, and author of C#
Essentials and C# in a Nutshell (O’Reilly).

Andrew Flegg (http://www.bleb.org/) works for IBM in the UK having
graduated from the University of Warwick a few years ago. He’s cur-
rently the webmaster of Hursley Lab’s intranet site. Most of his work
(and fun) at the moment is taken up with Perl, Java, HTML, and CSS.
Andrew is particularly keen on clean, reusable code, which always ends
up saving time in the long run. He’s written several open source
projects, as well as a couple of commercial applications for RISC OS (as
used in the lyonix PC: the first desktop computer using an Intel XScale).

X

Credits

In his non-computer time, Andrew is trying to organize a wedding hav-
ing just got engaged!

Andrew Goodman (http://www.page-zero.com) is cofounder and editor
of Traffick.com, an acclaimed guide to search engines and portals. Traf-
fick foresaw trends such as the rise of pay-per-click search engines well
before they were adopted by the mainstream. Goodman has published
articles in publications such as Internet Markets, The Globe and Mail,
and Yorkshire Post Magazine. He is often cited in various business and
technology publications, and he often speaks at conferences such as
Search Engine Strategies.

Kevin Hemenway (http://www.disobey.com/), better known as Morbus
Iff, is the creator of disobey.com, which bills itself as “content for the dis-
contented.” Publisher, developer, and writer of more home cooking than
you could ever imagine (like the popular open sourced syndicated reader
AmphetaDesk, the best-kept gaming secret Gamegrene.com, the popu-
lar Ghost Sites and Nonsense Network, the giggle-inducing articles at the
O'Reilly Network, a few pieces at Apple’s Internet Developer site, etc.),
he’s an ardent supporter of cloning merely so he can ‘get more work
done. He cooks with a Fry Pan of Intellect +2 and lives in Concord, NH.

Mark Horrell (http://www.markhorrell.com/) has worked in search
engine optimization since 1996 when he joined Net Resources Interna-
tional, a publisher of industrial engineering web sites, where he con-
ceived and developed the company’s Internet marketing strategy. He left
in 2002 and is now a freelance web developer based in London, UK,
specializing in search engine—friendly design.

Judy Hourihan (http://judy.hourihan.com/).

Steven Johnson (http://www.stevenberlinjohnson.com/) is the author of
two books, Emergence and Interface Culture. He co-created the sites
FEED and Plastic.com, and now blogs regularly at www.
stevenberlinjohnson.com. He writes the monthly “Emerging Technol-
ogy” column for Discover Magazine, and his work has appeared in many
publications, including The New York Times, Harper’s, Wired, and The
New Yorker. He lives in Brooklyn, New York.

Stuart Langridge (http://www.kryogenix.org/) gets paid to hack on the
Web during the day, and does it for free at nights when he’s not argu-
ing about Buffy or Debian GNU/Linux. He’s keen on web standards,
Python, and strange things you can do with JavaScript, all of which can
be seen at his web site and weblog. He’s also slightly surprised that the
Google Art Creator, which was an amusing little hack done in a day, is
the most popular thing he’s ever written and got him into a book.

Credits | xi

* Beau Lebens (http://www.dentedreality.com.au) is a consulting informa-

tion architect and PHP developer, who is heavily interested in move-
ments such as an increase in online strategy and planning, the REST
philosophy, and open source development. Beau has a self-taught back-
ground in web technologies and currently works in a clicks 'n’ mortar
company based out of Perth, Western Australia, and runs his own con-
sultancy at the same time. He firmly believes in making complex sys-
tems easy to use and simple to understand, and makes this a primary
objective in all of his projects. More information about Beau and what
he’s up to is available on his web site, the home of his consulting com-
pany, Dented Reality, as well as a number of musings and observations
on the web industry and technology in general.

Mark Pilgrim (http://diveintomark.org/) is the author of Dive Into
Python, a free Python book for experienced programmers, and Dive Into
Accessibility, a free book on web accessibility techniques. He works for
MassLight, a Washington DC-based training and web development
company, where, unsurprisingly, he does training and web develop-
ment. But he lives outside Raleigh, North Carolina, because it’s warmer.

Chris Sells (http://www.sellsbrothers.com/) is an independent consult-
ant, speaker, and author specializing in distributed applications in .NET
and COM. He’s written several books and is currently working on Win-
dows Forms for C# and VB.NET Programmers and Mastering Visual Stu-
dio .NET. In his free time, Chris hosts various conferences, directs the
Genghis source-available project, plays with Rotor, and in general,
makes a pest of himself at Microsoft design reviews.

Alex Shapiro (http://www.touchgraph.com/) is the founder and CTO of
TouchGraph LLC. Alex’s experience with TouchGraph is paralleled by
that of the dotcom survivors described in Newsweek’s March 25, 2002
“Welcome Back to Silicon Valley” cover story. When faced with a
shrinking technology market, he too decided to take the opportunity to
innovate rather then struggling to find generic employment. On Janu-
ary 15, 2001, Alex quit his first job at Sapient, NYC, ahead of the first
round of layoffs. Luckily, he was able to find work as an independent
consult designing software for a brand valuation firm. His free time was
spent polishing off the graph visualization code at the heart of Touch-
Graph. In May 2002, Alex passed the brand valuation client to a friend
and started working on TouchGraph full time. Since then, things have
been very exciting due to the growing popularity and public acclaim for
the software. TouchGraph has yet to get first-round funding.

| Credits

* Kevin Shay (http://www.staggernation.com/) is a writer and web pro-
grammer who lives in Brooklyn, New York. His Google API scripts,
Movable Type plug-ins, and other work can be found at the soon-to-
launch staggernation.com.

* Gary Stock (http://www.googlewhack.com/stock.htm) coined the term
“Google whack” while he had intended to be doing research for
UnBlinking (http://www.unblinking.com/). When Gary writes for
UnBlinking, he might better be focused on his role as CTO of the news
clipping and briefing service Nexcerpt (http://www.nexcerpt.com/). Gary
works at Nexcerpt to get a break from stewardship of unusual flora and
fauna on 160 acres of woods and wetland he owns, which in turn, keeps
him from spending time with his wife (and Nexcerpt CEO) Julie, whom
he married to offset his former all-consuming career as an above-top-
secret computer spy, which he first had entered to avoid permanently
becoming a jazz arranger and pianist. Seriously.

* Brett Tabke (http://www.webmasterworld.com) is the owner/operator of
WebmasterWorld.com, the leading news and discussion site for web
developers and search engine marketers. Tabke has been involved in
computing since the late 70s and is one of the Internet’s foremost
authorities on search engine optimization.

* Matt Webb (http://interconnected.org/home/) is a systems engineer at
UpMyStreet.com, specializing in developing UK Government and Pub-
lic Sector local information sites. Outside of work, he’s developed sev-
eral IM bots (including Googlematic), Dirk (a vast collaborative net of
associations), and runs and writes for Upsideclown.com, which pub-
lishes short fiction and creative writing and has spawned a book. He is
best known for Interconnected, a weblog on society and technology. He
lives in London.

Acknowledgments

We would like to thank all those who contributed their ideas and code for
Google hacks to this book. Many thanks to Nelson Minar and the rest of the
- Google Engineering Team, Nate Tyler, and everyone else at Google who
provided ideas, suggestions, and answers—not to mention the Google Web
API itself. And to Andy Lester, our technical editor, goes much appreciation
for his thorough nitpicking.

Credits | xiii

Tara

Everyone at O’Reilly has been great in helping pull this book together, but 1
wouldn’t have gotten to participate in this book if it hadn’t been for Tim All-
wine, who first helped me with Perl programs a couple of years ago.

My family, especially my husband, has been great tolerating my distraction
as I sat around muttering to myself about variables and subroutines.

Even as this book was being written I needed help understanding what Perl
could and couldn’t do. Kevin Hemenway was an excellent teacher, patiently
explaining, providing examples, and when all else failed, pointing and
laughing at my code.

Of course, most of this book wouldn’t exist without the release of Google’s
API. A big thanks to Google for building a playground for us thousands of
search engine junkies. And just as big a thanks to the many contributors
who so generously allowed their applications to appear in this book.

Finally, a big, big, he-gets-his-own paragraph thanks to Rael Dornfest, who
is a great co-author/editor and a lot of fun to work with.

Rael

First and foremost, to Asha and Sam—always my inspiration, joy, and best
friends.

My extended family and friends, both local and virtual, who’d begun to
wonder if they needed to send in a rescue party.

I'd like to thank Dale Dougherty for bringing me in to work on the Hacks
series; working from the other side of the page has been a learning experi-
ence and a half. The O’Reilly editors, production, product management, and
marketing staff are consummate professionals, hackers, and mensches.
They’ve helped me immeasurably in my fledgling editorial stint. Extra spe-
cial thanks goes out to my virtual cube-mate, Nat Torkington, and to Laurie
Petrycki for showing me the ropes.

Tara, it’s been fabulous traveling this road with you and I intend to make
sure our paths keep on crossing at interesting intersections.

Karma points to Clay Shirky and Steven Johnson for egging me on to do
more with the Google API than late-night fiddling. And, of course, a shout-
out goes to the blogosphere population and folks in my Google neighbor-
hood for their inspired prattling on APIs and all other things geekworthy.

Xiv | Credits

Foreword

When we started Google, it was hard to predict how big it would become.
That our search engine would someday serve as a catalyst for so many
important web developments was a distant dream. We are honored by the
growing interest in Google and offer many thanks to those who created this
book—the largest and most comprehensive report on Google search tech-
nology that has yet to be published.

Search is an amazing field of study, because it offers infinite possibilities for
how we might find and make information available to people. We join with
the authors in encouraging readers to approach this book with a view
toward discovering and creating new ways to search. Google’s mission is to
organize the world’s information and make it universally accessible and use-
ful, and we welcome any contribution you make toward achieving this goal.

Hacking is the creativity that fuels the Web. As software developers our-
selves, we applaud this book for its adventurous spirit. We’re adventurous,
too, and were happy to discover that this book highlights many of the same
experiments we conduct on our free time here at Google.

Google is constantly adapting its search algorithms to match the dynamic
growth and changing nature of the Web. As you read, please keep in mind
that the examples in this book are valid today but, as Google innovates and
grows over time, may become obsolete. We encourage you to follow the lat-
est developments and to participate in the ongoing discussions about search
as facilitated by books such as this one.

Virtually every engineer at Google has used an O’Reilly publication to help
them with their jobs. O’Reilly books are a staple of the Google engineering
library, and we hope that Google Hacks will be as useful to others as the
O’Reilly publications have been to Google.

With the largest collection of web documents in the world, Google is a
reflection of the Web. The hacks in this book are not just about Google,
they are also about unleashing the vast potential of the Web today and in
the years to come. Google Hacks is a great resource for search enthusiasts,
and we hope you enjoy it as much as we did.

Thanks,

— The Google Engineering Team
December 11, 2002
Mountain View, California

Preface

Search engines for large collections of data preceded the World Wide Web
by decades. There were those massive library catalogs, hand-typed with
painstaking precision on index cards and eventually, to varying degrees,
automated. There were the large data collections of professional informa-
tion companies such as Dialog and LexisNexis. Then there are the still-
extant private, expensive medical, real estate, and legal search services.

Those data collections were not always easy to search, but with a little
finesse and a lot of patience, it was always possible to search them thor-
oughly. Information was grouped according to established ontologies, data
preformatted according to particular guidelines.

Then came the Web.

Information on the Web—as anyone knows who’s ever looked at half-a-
dozen web pages knows—is not all formatted the same way. Nor is it neces-
sarily particularly accurate. Nor up to date. Nor spellchecked. Nonetheless,
search engines cropped up, trying to make sense of the rapidly-increasing
index of information online. Eventually, special syntaxes were added for
searching common parts of the average web page (such as title or URL).
Search engines evolved rapidly, trying to encompass all the nuances of the
billions of documents online, and they still continue to evolve today.

Google™ threw its hat into the ring in 1998. The second incarnation of a
search engine service known as BackRub, the name “Google” was a play on
the word “googol,” a one followed by a hundred zeros. From the beginning,
Google was different from the other major search engines online—AltaVista,
Excite, HotBot, and others.

Was it the technology? Partially. The relevance of Google’s search results
was outstanding and worthy of comment. But more than that, Google’s
focus and more human face made it stand out online.

xvil

With its friendly presentation and its constantly expanding set of options,
it’s no surprise that Google continues to get lots of fans. There are weblogs
devoted to it. Search engine newsletters, such as ResearchBuzz, spend a lot
of time covering Google. Legions of devoted fans spend lots of time uncover-
ing documented features, creating games (like Google whacking) and even
coining new words (like “Googling,” the practice of checking out a prospec-
tive date or hire via Google’s search engine.)

In April 2002, Google reached out to its fan base by offering the Google API.
The Google API gives developers a legal way to access the Google search
results with automated queries (any other way of accessing Google’s search
results with automated software is against Google’s Terms of Service.)

Why Google Hacks?

“Hacks” are generally considered to be “quick-n-dirty” solutions to pro-
gramming problems or interesting techniques for getting a task done. But
what does this kind of hacking have to do with Google?

Considering the size of the Google index, there are many times when you
might want to do a particular kind of search and you get too many results
for the search to be useful. Or you may want to do a search that the current
Google interface does not support.

The idea of Google Hacks is not to give you some exhaustive manual of how
every command in the Google syntax works, but rather to show you some
tricks for making the best use of a search and show applications of the Goo-
gle API that perform searches that you can’t perform using the regular Goo-
gle interface. In other words, hacks.

Dozens of programs and interfaces have sprung up from the Google API.
Both games and serious applications using Google’s database of web pages
are available from everybody from the serious programmer to the devoted
fan (like me).

How This Book Is Organized

The combination of Google’s API and over 3 billion pages of constantly
shifting data can do strange things to your imagination and give you lots of
new perspectives on how best to search. This book goes beyond the instruc-
tion page to the idea of “hacks”—tips, tricks, and techniques you can use to
make your Google searching experience more fruitful, more fun, or (in a
couple of cases) just more weird. This book is divided into several chapters:

xviii | Preface

Chapter 1, Searching Google
This chapter describes the fundamentals of how Google’s search proper-
ties work, with some tips for making the most of Google’s syntaxes and
specialty search offerings. Beyond the list of “this syntax means that,”
we’ll take a look at how to eke every last bit of searching power out of
each syntax—and how to mix syntaxes for some truly monster searches.

Chapter 2, Google Special Services and Collections
Google goes beyond web searching into several different arenas, includ-
ing images, USENET, and news. Did you know that these collections
have their own syntaxes? As you’ll learn in this section, Google’s equally
adroit at helping you holiday shop or search for current events.

Chapter 3, Third-Party Google Services
Not all the hacks are ones that you want to install on your desktop or
web server. In this section, we’ll take a look at third-party services that
integrate the Google API with other applications or act as handy web
tools—or even check Google by email!

Chapter 4, Non-API Google Applications
Google’s API doesn’t search all Google properties, but sometimes it’d be
real handy to take that search for phone numbers or news stories and
save it to a file. This collection of scrapers shows you how.

Chapter 5, Introducing the Google Web API
We'll take a look under the hood at Google’s API, considering several
different languages and how Google works with each one. Hint: if
you’ve always wanted to learn Perl but never knew what to “do with it,”
this is your section.

Chapter 6, Google Web API Applications
Once you've got an understanding of the Google AP, you’ll start think-
ing of all kinds of ways you can use it. Take inspiration from this collec-
tion of useful applications that use the Google API.

Chapter 7, Google Pranks and Games
All work and no play makes for a dull web surfer. This collection of
pranks and games turns Google into a poet, a mirror, and a master chef.
Well, a chef anyway. Or at least someone who throws ingredients
together.

Chapter 8, The Webmaster Side of Google
If you're a web wrangler, you see Google from two sides—from the
searcher side and from the side of someone who wants to get the best
search ranking for a web site. In this section, you’ll learn about Google’s
(in)famous PageRank, cleaning up for a Google visit, and how to make
sure your pages aren’t indexed by Google if you don’t want them there.

How to Use This Book

You can read this book from cover to cover if you like, but for the most part,
each hack stands on its own. So feel free to browse, flipping around what-
ever sections interest you most. If you’re a Perl “newbie,” you might want to
try some of the easier hacks and then tackle the more extensive ones as you
get more confident.

Conventions Used in This Book
The following is a list of the typographical conventions used in this book:

Italic
Used to indicate new terms, URLSs, filenames, file extensions, directo-
ries, commands and options, program names, and to highlight com-
ments in examples. For example, a path in the filesystem will appear as
/Developer/Applications.

Constant width
Used to show code examples, verbatim Google searches, the contents of
files, or the output from commands.

Constant width bold
Used in examples and tables to show commands or other text that
should be typed literally.

Constant width italic
Used in examples and tables to show text that should be replaced with
user-supplied values.

Color
The second color is used to indicate a cross-reference within the text.

- A carriage return () at the end of a line of code is used to denote an
unnatural line break; that is, you should not enter these as two lines of
code, but as one continuous line. Multiple lines are used in these cases
due to page width constraints.

You should pay special attention to notes set apart from the text with the
following icons:

This is a tip, suggestion, or a general note. It contains useful
supplementary information about the topic at hand.

f This is a warning or note of caution.

xx | Preface

The thermometer icons, found next to each hack, indicate the relative com-

plexity of the hack:

E beginner i moderate £ expert

How to Contact Us

We have tested and verified the information in this book to the best of our
ability, but you may find that features have changed (or even that we have
made mistakes!). As reader of this book, you can help us to improve future
editions by sending us your feedback. Please let us know about any errors,
inaccuracies, bugs, misleading or confusing statements, and typos that you
find anywhere in this book.

Please also let us know what we can do to make this book more useful to
you. We take your comments seriously and will try to incorporate reason-
able suggestions into future editions. You can write to us at:

O’Reilly & Associates, Inc.

1005 Gravenstein Hwy N.

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

The web site for Google Hacks lists examples, errata, and plans for future
editions. You can find this page at:

http://www.oreilly.com/catalog/googlehks/
For more information about this book and others, see the O’Reilly web site:
http:/lwww.oreilly.com

Gotta Hack? To explore Hacks books online or to contribute a hack for
future titles, visit:

http://hacks.oreilly.com

Preface | xxi

xuii

CHAPTER ONE

Searching Google
Hacks #1-28

Google’s front page is deceptively simple: a search form and a couple of but-
tons. Yet that basic interface—so alluring in its simplicity—belies the power
of the Google engine underneath and the wealth of information at its dis-
posal. And if you use Google’s search syntax to its fullest, the Web is your
research oyster.

But first you need to understand what the Google index isn’t.

What Google Isn’t

The Internet is not a library. The library metaphor presupposes so many
things—a central source for resource information, a paid staff dutifully
indexing new material as it comes in, a well-understood and rigorously
adhered-to ontology—that trying to think of the Internet as a library can be
misleading.

Let’s take a moment to dispel some of these myths right up front.

Google’s index is a snapshot of all that there is online. No search engine—
not even Google—knows everything. There’s simply too much and its
all flowing too fast to keep up. Then there’s the content Google notices
but chooses not to index at all: movies, audio, Flash animations, and
innumerable specialty data formats.

Everything on the Web is credible. 1t's not. There are things on the Inter-
net that are biased, distorted, or just plain wrong—whether intentional
or not. Visit the Urban Legends Reference Pages (http://www.snopes.
com/) for a taste of the kinds of urban legends and other misinforma-
tion making the rounds of the Internet.

Content filtering will protect you from offensive material. While Google’s
optional content filtering is good, it’s certainly not perfect. You may
well come across an offending item among your search results.

Google’s index is a static snapshot of the Web. It simply cannot be so. The
index, as with the Web, is always in flux. A perpetual stream of spiders
deliver new-found pages, note changes, and inform of pages now gone.
And the Google methodology itself changes as its designers and main-
tainers learn. Don’t get into a rut of searching a particular way; to do so
is to deprive yourself of the benefit of Google’s evolution.

What Google Is

The way most people use an Internet search engine is to drop in a couple of
keywords and see what turns up. While in certain domains that can yield
some decent results, it’s becoming less and less effective as the Internet gets
larger and larger.

Google provides some special syntaxes to help guide its engine in under-
standing what you're looking for. This section of the book takes a detailed
look at Google’s syntax and how best to use it. Briefly:

Within the page
Google supports syntaxes that allow you to restrict your search to cer-
tain components of a page, such as the title or the URL.

Kinds of pages
Google allows you to restrict your search to certain kinds of pages, such
as sites from the educational (EDU) domain or pages that were indexed
within a particular period of time.

Kinds of content
With Google, you can find a variety of file types; for example, Microsoft
Word documents, Excel spreadsheets, and PDF files. You can even find
specialty web pages the likes of XML, SHTML, or RSS.

Special collections
Google has several different search properties, but some of them aren’t
as removed from the web index as you might think. You may be aware
of Google’s index of news stories and images, but did you know about
Google’s university searches? Or how about the special searches that
allow you to restrict your searches by topic, to BSD, Linux, Apple,
Microsoft, or the U.S. government?

These special syntaxes are not mutually exclusive. On the contrary, it’s in
the combination that the true magic of Google lies. Search for certain kinds
of pages in special collections or different page elements on different types of

pages.

2 | Searching Google

If you get one thing out of this book, get this: the possibilities are (almost)
endless. This book can teach you techniques, but if you just learn them by
rote and then never apply them, they won’t do you any good. Experiment.
Play. Keep your search requirements in mind and try to bend the resources
provided in this book to your needs—build a toolbox of search techniques
that works specifically for you.

Google Basics

Generally speaking, there are two types of search engines on the Internet.
The first is called the searchable subject index. This kind of search engine
searches only the titles and descriptions of sites, and doesn’t search individ-
ual pages. Yahoo! is a searchable subject index. Then there’s the full-text
search engine, which uses computerized “spiders” to index millions, some-
times billions, of pages. These pages can be searched by title or content,
allowing for much narrower searches than searchable subject index. Google
is a full-text search engine.

Whenever you search for more than one keyword at a time, a search engine
has a default method of how to handle that keyword. Will the engine search
for both keywords or for either keyword? The answer is called a Boolean
default; search engines can default to Boolean AND (it’ll search for both key-
words) or Boolean OR (it’ll search for either keyword). Of course, even if a
search engine defaults to searching for both keywords (AND) you can usually
give it a special command to instruct it to search for either keyword (0R). But
the engine has to know what to do if you don’t give it instructions.

Basic Boolean

Google’s Boolean default is AND; that means if you enter query words with-
out modifiers, Google will search for all of them. If you search for:

snowblower Honda "Green Bay"

Google will search for all the words. If you want to specify that either word
is acceptable, you put an OR between each item:

snowblower OR snowmobile OR “"Green Bay"

If you want to definitely have one term and have one of two or more other
terms, you group them with parentheses, like this:

snowblower (snowmobile OR "Green Bay")

This query searches for the word “snowmobile” or phrase “Green Bay”
along with the word “snowblower.” A stand-in for OR borrowed from the
computer programming realm is the | (pipe) character, as in:

snowblower (snowmobile | "Green Bay")

Searching Google | 3

If you want to specify that a query item must not appear in your results, use
a - (minus sign or dash).

snowblower snowmobile -"CGreen Bay"

This will search for pages that contain both the words “snowblower” and
“snowmobile,” but not the phrase “Green Bay.”

Simple Searching and Feeling Lucky

The I'm Feeling Lucky™ button is a thing of beauty. Rather than giving you
a list of search results from which to choose, you’re whisked away to what
Google believes is the most relevant page given your search, a.k.a. the top
first result in the list. Entering washington post and clicking the I'm Feeling
Lucky button will take you directly to http://www.washingtonpost.com/. Try-
ing president will land you at http://www.whitehouse.gov/.

Just in Case

Some search engines are “case sensitive”; that is, they search for queries
based on how the queries are capitalized. A search for "GEORGE WASHINGTON"
on such a search engine would not find “George Washington,” “george
washington,” or any other case combination. Google is not case sensitive. If

you search for Three, three, or THREE, you're going to get the same results.

Other Considerations

There are a couple of other considerations you need to keep in mind when
using Google. First, Google does not accept more than 10 query words, spe-
cial syntax included. If you try to use more than ten, they’ll be summarily
ignored. There are, however, workarounds [Hack #5],

Second, Google does not support “stemming,” the ability to use an asterisk
(or other wildcard) in the place of letters in a query term. For example, moon*
in a search engine that supported stemming would find “moonlight,” “moon-
shot,” “moonshadow,” etc. Google does, however, support an asterisk as a
full word wildcard [Hack #13). Searching for "three * mice" in Google would

find “three blind mice,” “three blue mice,” “three red mice,” and so forth.

” W«

On the whole, basic search syntax along with forethought in keyword choice
will get you pretty far. Add to that Google’s rich special syntaxes, described
in the next section, and you’ve one powerful query language at your disposal.

The Special Syntaxes

In addition to the basic AND, OR, and quoted strings, Google offers some
rather extensive special syntaxes for honing your searches.

4 | Searching Google

Google being a full-text search engine, it indexes entire web pages instead of
just titles and descriptions. Additional commands, called special syntaxes,
let Google users search specific parts of web pages or specific types of infor-
mation. This comes in handy when you’re dealing with 2 billion web pages
and need every opportunity to narrow your search results. Specifying that
your query words must appear only in the title or URL of a returned web
page is a great way to have your results get very specific without making
your keywords themselves too specific.

; Some of these syntaxes work well in combination. Others
fare not quite as well. Still others do not work at all. For
detailed discussion on what does and does not mix, see
“Mixing Syntaxes” [Hack #8].

intitle:
intitle: restricts your search to the titles of web pages. The variation,
allintitle: finds pages wherein all the words specified make up the
title of the web page. It’s probably best to avoid the allintitle: varia-
tion, because it doesn’t mix well with some of the other syntaxes.
intitle:"george bush"
allintitle:"money supply" economics
inurl:
inurl: restricts your search to the URLs of web pages. This syntax tends
to work well for finding search and help pages, because they tend to be
rather regular in composition. An allinurl: variation finds all the words
listed in a URL but doesn’t mix well with some other special syntaxes.
inurl:help
allinurl:search help
intext:
intext: searches only body text (i.e., ignores link text, URLs, and titles).
There’s an allintext: variation, but again, this doesn’t play well with
others. While its uses are limited, it’s perfect for finding query words
that might be too common in URLs or link titles.
intext: "yahoo.com"
intext:html
inanchor:
inanchor: searches for text in a page’s link anchors. A link anchor is the
descriptive text of a link. For example, the link anchor in the HTML
code 0'Reilly and Associates is
“O’Reilly and Associates.”

inanchor:"tom peters"

Searching Google | 5

site:
site: allows you to narrow your search by either a site or a top-level
domain. AltaVista, for example, has two syntaxes for this function
(host: and domain:), but Google has only the one.
site:loc.gov
site:thomas.loc.gov

site:edu
site:nc.us

link:
link: returns a list of pages linking to the specified URL. Enter link:
www. google.com and you’ll be returned a list of pages that link to Goo-
gle. Don’t worry about including the http:// bit; you don’t need it, and,
indeed, Google appears to ignore it even if you do put it in. link: works
just as well with “deep” URLs—http://www.raelity.org/lang/perl/
blosxom/ for instance—as with top-level URLSs such as raelity.org.

cache:
cache: finds a copy of the page that Google indexed even if that page is
no longer available at its original URL or has since changed its content
completely. This is particularly useful for pages that change often.

If Google returns a result that appears to have little to do with your
query, you're almost sure to find what you're looking for in the latest
cached version of the page at Google.

cache :www.yahoo. com

daterange:

daterange: limits your search to a particular date or range of dates that a
page was indexed. It’s important to note that the search is not limited to
when a page was created, but when it was indexed by Google. So a page
created on February 2 and not indexed by Google until April 11 could
be found with daterange: search on April 11. Remember also that Goo-
gle reindexes pages. Whether the date range changes depends on
whether the page content changed. For example, Google indexes a page
on June 1. Google reindexes the page on August 13, but the page con-
tent hasn’t changed. The date for the purpose of searching with
daterange: is still June 1.

Note that daterange: works with Julian [Hack #12], not Gregorian dates (the
calendar we use every day.) There are Gregorian/Julian converters online,
but if you want to search Google without all that nonsense, use the
FaganFinder Google interface (http://www.faganfinder.com/engines/google.
shtml), offering daterange: searching via a Gregorian date pull-down

6 | Searching Google

menu. Some of the hacks deal with daterange: searching without head-
aches, so you'll see this popping up again and again in the book.

"George Bush" daterange:2452389-2452389

neurosurgery daterange:2452389-2452389

filetype:

filetype: searches the suffixes or filename extensions. These are usu-
ally, but not necessarily, different file types. I like to make this distinc-
tion, because searching for filetype:htm and filetype:html will give
you different result counts, even though they’re the same file type. You
can even search for different page generators, such as ASP, PHP, CGI,
and so forth—presuming the site isn’t hiding them behind redirection
and proxying. Google indexes several different Microsoft formats,
including: PowerPoint (PPT), Excel (XLS), and Word (DOC).

homeschooling filetype:pdf

"leading economic indicators" filetype:ppt

related:

related:, as you might expect, finds pages that are related to the speci-
fied page. Not all pages are related to other pages. This is a good way to
find categories of pages; a search for related:google.com would return a
variety of search engines, including HotBot, Yahoo!, and Northern Light.

related:www.yahoo.com
related:www.cnn.com

info:
info: provides a page of links to more information about a specified
URL. Information includes a link to the URL’s cache, a list of pages that
link to that URL, pages that are related to that URL, and pages that con-
tain that URL. Note that this information is dependent on whether
Google has indexed that URL or not. If Google hasn’t indexed that
URL, information will obviously be more limited.
info:www.oreilly.com
info:www.nytimes.com/technology
phonebook :
phonebook:, as you might expect, looks up phone numbers. For a deeper
look, see the section “Consulting the Phonebook” [Hack #17).
phonebook:John Doe CA
phonebook: (510) 555-1212
As with anything else, the more you use Google’s special syntaxes, the more
natural they’ll become to you. And Google is constantly adding more, much
to the delight of regular web-combers.

If, however, you want something more structured and visual than a single
query line, Google’s Advanced Search should be fit the bill.

Searching Google | 7

Advanced Search

The Google Advanced Search goes well beyond the capabilities of the
default simple search, providing a powerful fill-in form for date searching,
filtering, and more.

Google’s default simple search allows you to do quite a bit, but not all. The
Google Advanced Search (http://www.google.com/advanced_search?hl=en)
page provides more options such as date search and filtering, with “fill in the
blank” searching options for those who don’t take naturally to memorizing
special syntaxes.

Most of the options presented on this page are self-explanatory, but we’ll
take a quick look at the kinds of searches that you really can’t do with any
ease using the simple search’s single text-field interface.

Query Word Input

Because Google uses Boolean AND by default, it’s sometimes hard to logically
build out the nuances of just the query you're aiming for. Using the text
boxes at the top of the Advanced Search page, you can specify words that
must appear, exact phrases, lists of words, at least one of which must
appear, and words to be excluded.

Language

Using the Language pull-down menu, you can specify what language all
returned pages must be in, from Arabic to Turkish.

Filtering

Google’s Advanced Search further gives you the option to filter your results
using SafeSearch. SafeSearch filters only explicit sexual content (as opposed
to some filtering systems that filter pornography, hate material, gambling
information, etc.). Please remember that machine filtering isn’t 100% perfect.

File Format

The file format option lets you include or exclude several different Microsoft
file formats, including Word and Excel. There are a couple of Adobe for-
mats (most notably PDF) and Rich Text Format as options here too. This is
where the Advanced Search is at its most limited; there are literally dozens of
file formats that Google can search for, and this set of options represents
only a small subset.

8 | Searching Google

Setting Preferences = #

Date

Date allows you to specify search results updated in the last three months, six
months, or year. This date search is much more limited than the daterange:
syntax [Hack #11], which can give you results as narrow as one day, but Google
stands behind the results generated using the date option on the Advanced
Search, while not officially supporting the use of the daterange search.

The rest of the page provides individual search forms for other Google proper-
ties, including news search, page-specific search, and links to some of Goo-
gle’s topic-specific searches. The news search and other topic specific searches
work independently of the main advanced search form at the top of the page.

The advanced search page is handy when you need to use its unique fea-
tures or you need some help putting a complicated query together. Its “fill in
the blank” interface will come in handy for the beginning searcher or some-
one who wants to get an advanced search exactly right. That said, bear in
mind it is limiting in other ways; it’s difficult to use mixed syntaxes or build
a single syntax search using OR. For example, there’s no way to search for
(site:edu OR site:org) using the Advanced Search.

Of course, there’s another way you can alter the search results that Google
gives you, and it doesn’t involve the basic search input or the advanced
search page. It’s the preferences page.

Setting Preferences
#1 Customize the way you search Google.

Google’s preferences provide a nice, easy way to set your searching prefer-
ences from this moment forward.

Language

You can set your Interface Language, affecting the language in which tips and
messages are displayed. Language choices range from Afrikaans to Welsh,
with plenty of odd options including Bork Bork Bork! (the Swedish Chef),
Elmer Fudd, and Pig Latin thrown in for fun. Not to be confused with Inter-
face Language, Search Language restricts what languages should be consid-
ered when searching Google’s page index. The default being any language,
you could be interested only in web pages written in Chinese and Japanese,
or French, German, and Spanish—the combination is up to you. Figure 1-1
shows the page through which you can set your language preferences.

Searching Google | 9

~ Setting Preferences

All About Google
GMICW Language Tools

Search Specific Languages or Countries

Search pages written in: |French
Search s located in |Japan
Search fori‘”"“ . ~ _GoogleSearch |

Tip: If you typically search only pages in a specific language or languages, you can save this as your
default search behavior on the Preferences page.

Translate (BETA)
Translate text

| ﬁom .

| or

Translate a web page:
http:/f

Figure 1-1. Language Tools page

Filtering

Google’s SafeSearch filtering affords you a method of avoiding search results
that may offend your sensibilities. The default is no filtering. Moderate fil-
tering rules out explicit images, but not explicit language. Strict filtering fil-
ters both on text and images.

Number of Results

Google, by default, displays 10 results per page. For more results, click any
of the “Result Page: 1 2 3...” links at the bottom of each result page, or sim-
ply click the “Next” link.

You can specify your preferred number of results per page (10, 20, 30, 50,
100) along with whether you want results to open up in the current or a new
browser window.

Settings for Researchers

For the purpose of research, it’s best to have as many search results as possi-
ble on the page. Because it’s all text, it doesn’t take that much longer to load
100 results than it does 10. If you have a computer with a decent amount of
memory, it’s also good to have search results open in a new window; it’ll

10 | Searching Google

keep you from losing your place and leave you a window with all the search
results constantly available.

And if you can stand it, leave your filtering turned off, or at least limit the fil-
tering to moderate instead of strict. Machine filtering is not perfect and
unfortunately sometimes having filtering on means you might miss some-
thing valuable. This is especially true when you’re searching for words that
might be caught by a filter, like “breast cancer.”

Unless you're absolutely sure that you always want to do a search in one
language, I'd advise against setting your language preferences on this page.
Instead, alter language preferences as needed using the Google Language
Tools.

Between the simple search, advanced search, and preferences, you've got all
the beginning tools necessary to build just the Google query to suit your par-
ticular purposes.

ences in Google isn’t going to do you much good. You'll
have to reset them every time you open your browser. If you
can’t have cookies and you want to use the same preferences
every time, consider making a customized search form.

f Fair warning: if you have cookies turned off, setting prefer-

g Language Tools

) While you shouldn’t rely on Google’s language tools to do 100% accurate
translations of web pages, they can help you in your searches.

In the early days of the Web, it seemed like most web pages were in English.
But as more and more countries have come online, materials have become
available in a variety of languages—including languages that don’t originate
with a particular country (such as Esperanto and Klingon).

Google offers several language tools, including one for translation and one
for Google’s interface. The interface option is much more extensive than the
translation option, but the translation has a lot to offer.

Getting to the Language Tools

The language tools are available by clicking “Language Tools” on the front
page or by going to http://www.google.com/language_tools?hl=en.

The first tool allows you to search for materials from a certain country and/
or in a certain language. This is an excellent way to narrow your searches;
searching for French pages from Japan gives you far fewer results than
searching for French pages from France. You can narrow the search further

Searching Google | 11

Language Tools

by searching for a slang word in another language. For example, search for
the English slang word “bonce” on French pages from Japan.

The second tool on this page allows you to translate either a block of text or
an entire web page from one language to another. Most of the translations
are to and from English.

Machine translation is not nearly as good as human translation, so don’t rely
on this translation as either the basis of a search or as a completely accurate
translation of the page you’re looking at. Rely on it instead to give you the
“gist” of whatever it translates.

You don’t have to come to this page to use the translation tools. When you
enter a search, you'll see that some search results that aren’t in your lan-
guage of choice (which you set via Google’s preferences) have “[Translate
this page]” next to their titles. Click on one of those and you’ll be presented
with a framed, translated version of the page. The Google frame, at the top,
gives you the option of viewing the original version of the page, as well as
returning to the results or viewing a copy suitable for printing.

The third tool lets you choose the interface language for Google, from Afri-
kaans to Welsh. Some of these languages are imaginary (Bork-Bork-Bork
and Elmer Fudd) but they do work.

gon, for example, you'll need to know Klingon to figure out
how to set it back. If you're really stuck, delete the Google
cookie from your browser and reload the page; this should
reset all preferences to the defaults.

} Be warned that if you set your language preference to Klin-

How does Google manage to have so many interface languages when they
have so few translation languages? Because of the Google in Your Language
program, which gathers volunteers from around the world to translate Goo-
gle’s interface. (You can get more information on that program at http://
www.google.com/intl/en/language.html.)

Finally, the Language Tools page contains a list of region-specific Google
home pages—over 30 of them, from Deutschland to Latvija.

Making the Most of Google’s Language Tools

While you shouldn’t rely on Google’s translation tools to give you more
than the “gist” of the meaning (machine translation isn’t that good) you can
use translations to narrow your searches. The first way [described earlier:
use unlikely combinations of languages and countries to narrow your
results. The second way involves using the translator.

12 | Searching Google

Anatomy of a Search Result -

Select a word that matches your topic and use the translator to translate it
into another language. (Google’s translation tools work very well for single-
word translations like this.) Now, search for that word in a country and lan-
guage that don’t match it. For example, you might search for the German
word “LandstraRe” (highway) on French pages in Canada. Of course, you’ll
have to be sure to use words that don’t have English equivalents or you’ll be
overwhelmed with results.

Anatomy of a Search Result

Going beyond the obvious in reading Google search resuits.

You'd think a list of search results would be pretty straightforward,
wouldn’t you—just a page title and a link, possibly a summary? Not so with
Google. Google encompasses so many search properties and has so much
data at its disposal that it fills every results page to the rafters. Within a typi-
cal search result you can find sponsored links, ads, links to stock quotes,
page sizes, spelling suggestions, and more.

By knowing more of the nitty gritty details of what’s what in a search result,
you’ll be able to make some guesses (“Wow, this page that links to my page
is very large; perhaps it’s a link list”) and correct roadblocks (“I can’t find
my search term on this page; I'll check the version Google has cached”).
Furthermore, if you have a good idea what Google provides on its standard
search results page, you’ll have more of an idea of what’s available to you via
the Google APIL.

Let’s use the word “flowers” to examine this anatomy. Figure 1-2 shows the
result page for flowers.

First, you'll note at the top of the page is a selection of tabs, allowing you to
repeat your search across other Google searches, including Google Groups
Mack #30), Google Images [Hack #31], and the Google Directory. Beneath that
you’ll see a count for the number of results and how long the search took.

Sometimes you’ll see results/sites called out on colored backgrounds at the
top or right of the results page. These are called “sponsored links” (read:
advertisements). Google has a policy of very clearly distinguishing ads and
sticking only to text-based advertising rather than throwing flashing ban-
ners in your face like many other sites do.

Beneath the sponsored links you'll sometimes see a category list. The cate-
gory for flowers is Shopping — Flowers — Wire Services. You'll only see a
category list if you’re searching for very general terms and your search con-
sists of only one word. For example, if you searched for pinwheel flowers,
Google wouldn’t present the flowers category.

Searching Google | 13

of about 10,300,000. Search took 0.39 seconds

i mMFLORALSoom Same-day service. Smuordorhm S-nnlszs il

| RS.COM has the P ilable! Sponsored Link ;
www.1800flowers.com Send the Gift of FLOWERS - 100% Satisfaction Guaranteed!

Category: Shopping > Flowers > Wire Services
irtual rs - VirtualF| -

- s d
. Only $49.98, Virual Flowers - Now Featuring..... Thank you fo using Vitual . oPorot LI
F | 10% Off - Usa The Code "coupon”. |
® . VIRTUAL FLOWERS & VIRTUAL BOUQUET ARE REGISTERED |Large Selection, Secure, Nabormide
TRADEMARKS OF JFS INC. ... |BestFlowersOnline.com
www virtualflowers com/ - 13k - Cached - Similar pages |

- Welcome to FTD.COM - Fi ifts for All ...
.. Extras FREE Greetings Win Crystal & Roses Living Virtual Flower FREE FTD and Talsfiora Flowers i
Screensavers

Same Day Delivery Across America |
Flowers & Plant Care Good Neighbor Day®, Product Search Keyword or ltem #. ... flowersacrossamerica.com

Dncnpbon Operates mb site and toll-free telephone number, both of which market {Inerest sm——

Figure 1-2. Result page for “ﬂowers

Why are you seeing category results? After all, Google is a full-text search
engine, isn’t it? It’s because Google has taken the information from the
Open Directory Project (http://lwww.dmoz.org/) and crossed it with its own
popularity rankings to make the Google Directory. When you see catego-
ries, you're seeing information from the Google Directory.

The first real result (non-sponsored, that is) of the search for “flowers” is
shown in Figure 1-3.

The Original Virtual Flowers - VirtualFlowers.Com® - Send Fresh ... ‘

| . Only $49.99, Virtual Flowers - Now Featuring... ... Thank you for using Virtual
Flowers

| ®.VIRTUAL FLOWERS & VIRTUAL BOUQUET ARE REGISTERED

| TRADEMARKS OF JFS INC. ...

I www.virtualflowers.com/ - 13k - Cached - Similar pages

Figure 1-3. First (mm -sponsored) result for owers”

Let’s break that down into chunks.

The top line of each result is the page title, hyperlinked to the original page.

14 | Searching Google

Specialized Vocabularies: Slang and Terminology

The second line offers a brief extract from this site. Sometimes this is a
description or a sentence or so. Sometimes it's HTML mush. And some-
times it’s navigation goo. But Google tends to use description metatags
when they’re available in place of navigation goo; it’s rare that you can’t
look at a Google search result for even modicum of an idea what the site is
all about.

The next line sports several informative bits. First, there’s the URL: second,
the size of the page (Google will only have the page size available if the page
has been cached). There’s a link to a cached version of the page if available.
Finally, there’s a link to find similar pages.

Why Bother?

Why would you bother reading the search result metadata? Why not simply
visit the site and see if it has what you want?

If you’ve got a broadband connection and all the time in the world, you
might not want to bother with checking out the search results. But if you
have a slower connection and time is at a premium, consider the search
result information.

First, check the page summary. Where does your keyword appear? Does it
appear in the middle of a list of site names? Does it appear in a way that
makes it clear that the context is not what you’re looking for?

Check the size of the page if it’s available. Is the page very large? Perhaps it’s
just a link list. Is it just 1 or 2K? It might be too small to find the detailed
information you’re looking for. If your aim is link lists [Hack #21], keep a look
out for pages larger than 20K.

1 Specialized Vocabularies: Slang and
Terminology

Your choice of words can make a big difference to the search results you get
with Google.

When a teenager says something is “phat,” that’s slang—a specialized
vocabulary for a certain section of the world culture. When a copywriter
scribbles “stet” on an ad, that’s not slang, but it’s still specialized vocabu-
lary for a certain section of the world culture—in this case, the advertising
industry.

We have distinctive speech patterns that are shaped by our educations, our
families, and where we live. Further, we may use another set of words based
on our occupation.

Searching Google | 15

- Specialized Vocabularies: Slang and Terminology

Being aware of these specialty words can make all the difference in the world
when it comes to searching. Adding specialized words to your search
query—whether slang or industry vocabulary—can really change the slant
of your search results.

Slang

Slang gives you one more way to break up your search engine results into
geographically distinct areas. There’s some geographical blurriness when
you use slang to narrow your search engine results, but it’s amazing how
well it works. For example, search Google for football. Now search for
football bloke. Totally different results set, isn’t it? Now search for football
bloke bonce. Now you’re into soccer narratives.

Of course, this is not to say that everyone in England automatically uses the
word “bloke” any more than everyone in the southern U.S. automatically
uses the word “y’all.” But adding well-chosen bits of slang (which will take
some experimentation) will give a whole different tenor to your search
results and may point you in unexpected directions. You can find slang from
the following resources:

The Probert Encyclopedia—Slang
http://lwww.probertencyclopaedia.com/slang.htm
This site is browseable by first letter or searchable by keyword. (Note
that the keyword search covers the entire Probert Encyclopedia—slang
results are near the bottom.) Slang is from all over the world. It’s often
crosslinked, especially drug slang. As with most slang dictionaries, this
site will contain materials that might offend.

A Dictionary of Slang

http:/fwww.peevish.co.uk/slang/
This site focuses on slang heard in the United Kingdom, which means
slang from other places as well. It’s browseable by letter or via a search
engine. Words from outside the UK are marked with their place of ori-
gin in brackets. Words are also denoted as having humorous usage, vul-
gar, derogatory, etc.

Surfing for Slang

http:/fwww.linkopp.com/members/vlaiko/slanglinks.htm
Of course each area in the world has its own slang. This site has a good
meta-list of English and Scandinavian slang resources.

16 | Searching Google

Specialized Vocabularies: Slang and Terminology

Using Google with Slang

Start out by searching Google for your query without the slang. Check the
results and decide where they’re falling short. Are they not specific enough?
Are they not located in the right geographical area? Are they not covering
the right demographic—teenagers, for example?

Introduce one slang word at a time. For example, for a search for football
add the word “bonce” and check the results. If they’re not narrowed down
enough, add the word “bloke.” Add one word at a time until you get to the
kind of results you want. Using slang is an inexact science, so you’ll have to
do some experimenting.

Some things to be careful of when using slang in your searches:

* Try many different slang words.

* Don’t use slang words that are generally considered offensive except as
a last resort. Your results will be skewed.

* Be careful when using teenage slang, which changes constantly.

* Try searching for slang when using Google Groups. Slang crops up
often in conversation.

* Minimize your searches for slang when searching for more formal
sources like newspaper stories.

* Don’t use slang phrases if you can help it; in my experience these
change too much to be consistently searchable. Stick to words.

Specialized Vocabularies—Industrial Slang

Specialized vocabularies are those vocabularies used in certain fields. The
medical and legal fields are the two I think of most often when I think of
specialized vocabularies, though there are many other fields.

When you need to tip your search to the more technical, the more special-
ized, and the more in-depth, think of a specialized vocabulary. For example,
do a Google search for heartburn. Now do a search for heartburn GERD. Now
do a search for heartburn GERD "gastric acid". You'll see each of them is
very different.

With some fields, finding specialized vocabulary resources will be a snap.
But with others it’s not that easy. As a jumping-off point, try the Glossarist
site at http://www.glossarist.com; it's a searchable subject index of about
6,000 different glossaries covering dozens of different topics. There are also
several other large online resources covering certain specific vocabularies.
These include:

Searching Google | 17

- Specialized Vocabularies: Slang and Terminology

The On-Line Medical Dictionary

http:/lcancerweb.ncl.ac.uk/fomd/
This dictionary contains vocabulary relating to biochemistry, cell biol-
ogy, chemistry, medicine, molecular biology, physics, plant biology,
radiobiology, science and technology, biochemistry, cell biology, chem-
istry, medicine, molecular biology, physics, plant biology, radiobiology,
science, and technology and currently has over 46,000 listings.

You may browse the dictionary by letter or search it. Sometimes you can
search for a word that you know (bruise) and find another term that
might be more common in medical terminology (contusion). You can
also browse the dictionary by subject. Bear in mind that this dictionary
is in the UK and some spellings may be slightly different for American
users (tumour versus tumor, etc.).

MedTerms.com

http:/fwww.medterms.com/
MedTerms.com has far fewer definitions (around 10,000) but also has
extensive articles from MedicineNet. If you're starting from absolute
square one with your research and you need some basic information
and vocabulary to get started, search MedicineNet for your term (bruise
works well) and then move to MedTerms to search for specific words.

Law.com’s Legal Dictionary

http://dictionary.law.com/lookup2.asp
Law.com’s legal dictionary is excellent because you can search either
words or definitions (you can browse, too.) For example, you can search
for the word “inheritance” and get a list of all the entries which contain
the word “inheritance” in their definition. Very easy way to get to the
words “muniment of title” without knowing the path.

Using Specialized Vocabulary with Google

As with slang, add specialized vocabulary slowly—one word at a time—and
anticipate that it will narrow down your search results very quickly. For
example, take the word “spudding,” often used in association with oil drill-
ing. Searching for spudding by itself finds only about 2500 results on Goo-
gle. Adding Texas knocks it down to 525 results, and this is still a very
general search! Add specialty vocabulary very carefully or you’ll narrow
down your search results to the point where you can’t find what you want.

18 | Searching Google

Getting Around the 10 Word Limit -

Getting Around the 10 Word Limit

There are some clever ways around Google’s limit of 10 words to a query.

Unless you’re fond of long, detailed queries, you might never have noticed
that Google has a hard limit of 10 words—that’s keywords and special syn-
taxes combined—summarily ignoring anything beyond. While this has no
real effect on casual Google users, search-hounds quickly find this limit
rather cramps their style.

Whatever shall you do?

Favor Obscurity

By limiting your query to the more obscure of your keywords or phrase frag-
ments, you’ll hone results without squandering precious query words. Let’s
say you're interested in a phrase from Hamlet: “The lady doth protest too
much, methinks.” At first blush, you might simply paste the entire phrase
into the query field. But that’s seven of your 10 allotted words right there,
leaving no room for additional query words or search syntax.

The first thing to do is ditch the first couple of words; “The lady” is just too
common a phrase. This leaves the five word “doth protest too much,
methinks.” Neither “methinks” nor “doth” are words you might hear every
day, providing a nice Shakespearean anchor for the phrase. That said, one or
the other should suffice, leaving the query at an even four words with room
to grow:

"protest too much methinks"
or:
"doth protest too much"

Either of these will provide you, within the first five results, origins of the
phrase and pointers to more information.

Unfortunately, this technique won’t do you much good in the case of “Do as
I say not as [do,” which doesn’t provide much in the way of obscurity.
Attempt clarification by adding something like quote origin English usage
and you're stepping beyond the ten-word limit.

Playing the Wildcard

Help comes in the form of Google’s full-word wildcard [Hack #13]. It turns out
that Google doesn’t count wildcards toward the limit.

Searching Google | 19

i

~ Word Order Matters

So when you have more than 10 words, substitute a wildcard for common
words like so:

"do as * say not as * do" quote origin English usage

Presto! Google runs the search without complaint and you’re in for some
well-honed results.

Common words such as “I,” “a,” “the,” and “of” actually do
no good in the first place. Called “stop words,” they are
ignored by Google entirely. To force Google to take a stop

word into account, prepend it with a + (plus) character, as
in: +the.

Word Order Matters

Rearranging your query can have quite an effect.

Who would have thought it? The order in which you put your keywords in a
Google query can be every bit as important as the query words themselves.
Rearranging a query can change not only your overall result count but also
what results rise to the top. While one might expect this of quote-enclosed
phrases—*“have you any wool” versus “wool you any have”—it may come
as a surprise that it also affects sets of individual query words.

Google does warn you of this right up front: “Keep in mind that the order in
which the terms are typed will affect the search results.” Yet it provides lit-
tle in the way of explanation or suggestion as to how best to formulate a
query to take full advantage of this fact.

A little experimentation is definitely in order.

Search for the words (but not as a quote-enclosed phrase) hey diddle diddle.
Figure 1-4 shows the results.

The top results, as expected, do include the phrase “hey diddle diddle.”

Now give diddle hey diddle a whirl. Again, it should come as no surprise
that the first result contains the phrase “diddle hey diddle.” Figure 1-5
shows the results.

Finally, search for diddle diddle hey (Figure 1-6).

Another set of results, though this time it isn’t clear that Google is finding
the phrase “diddle diddle hey” first. (It does show up in the third result’s
snippet.)

20 | Searching Google

Word Order Matters

ey diddle diddle”

14,800

- Iri
Céad Mile Failte! "One hundred th d wel I". Four
who perpetuate the exciting traditional music of ...
www heydiddlediddie.org/- 8k - Oct. 20, 2002 - Cached - Similar pages

Hey Diddle Diddle

Click Here Hey Diddle Diddle. Home All Around the Mulberry Bush An
Apple A Day The Ants Go Marching As | Was Going to St. lves As ...

www.zelo com/familynursery/diddlediddle asp - 24k - Oct. 20, 2002 - Cached - Similar pages

Cat and Fiddie -ENCHANTED LEARNING SOFTWARE
. Hey diddle diddie, the cat and the fiddle, The cow jumped over the moon, The little
dog laughed to see such sport, And the dish ran away with the spoon. ...
www.enchantedleaming com/Catandfiddle html - 11k - Cached - Similar pages

EMdLm:omHeyDldﬂeDﬁde mcumthlddo .. Hey

diddie diddle, mwmdd\oﬂddo The cow jumped over the ...

www.enchanted frh / coloringMHeydiddie.shtmi - 3k - Cached - Similar pages
[com]

Figure 1-4. Result page for “hey diddle diddle”

Advanced Search Preferences Language Tools Search Tips

Google T

L'u'1 b

Liracion 3
liddle hey diddle

Fuzzy & Wuzzy

Fuzzy & Wuzzy. NOW FUZZY AND WUZZY WERE TWO FISH IN THE SEA, HEY DIDDLE, HEY DIDDLE,
HEY DIDDLE DEE (if you were a fish, you could go a swimming with me) THEY ...

www badtime.comMtmlfuzzy___ wuzzy htm - 12k - Cached - Similar pages

Céad Mile Failte! “One hundr e ',F "

who perpetuate the exciting traditional music of ...
www.heydiddlediddle org/ - 8k - Oct. 20, 2002 - Cached - Similar pages

Hey Diddle Diddle
Click Here Hey Diddle Diddle. Home All Around the Mulberry Bush An
Apple A Day The Anh Go Marching As | Was Going to St. Ives As ..

www zelo, ffamik yididdlediddle. asp - 24k - Oct. 20, 2002 Cached - Similar pages

File Fm PDFJ'Mob-Mchd View as HTM

Hey Diddie Diddle Hey diddle diddle, The cat and the fiddle, The cow jumped over

the moon; Thoﬂﬂodoglu@odfommdulpoﬂ.alndhdihrln

www.alief.isd tenet.edu/smith/smithicontent_areas/ library/songs_and bo-rplmpdf - Similar pages

Figure 1-5. Result page for “diddle hey diddle”

What's Going On?

It appears that even if you don’t specify a search as a phrase, Google accords
any occurence of the words as a phrase greater weight and more promi-
nence. This is followed by measures of adjacency between the words and
then, finally, the weights of the individual words themselves.

Searching Google | 21

Repetition Matters

Hey Diddle Diddle home - Irish Musu: for Contra Danci

Céad Mile Failte! "One hundred th I*. Four

who perpetuate the axciting traditional music of ...

www. heydiddlediddle.org/ - 8k - Oct. 20, 2002 - Cached - Similar pages

|
|
.
|
|

Hey Diddle Diddle
Click Here Hey Diddle Diddle. Home All Around the Mulberry Bush An
Apple A Day The Ants Gol\nluchng&s | Was Going to St. lves As ...

www Zelo.com/ffamily/t yididdlediddie.asp - 24k - Oct. 20, 2002 - Cached - Similar pages
[PDFIHey Diddle Diddle Hey diddle diddle, The cat and the fiddle, The ...

| | File Format: PDFfAdobe Acrobat - View as HTML

| | Hey Diddle Diddle Hey diddle diddle, The cat and the fiddle, The cow jumped over

| | the moon; The litthe dog Iaughod To see such a sport, And the dish ran away ...

www.alief isd tenet.eduk tent_areas/ library/songs_and_fingerplays. pdf - Similar pages

Hey Diddle Diddle Printout - EnchantedLearning.com
EnchantedLeaming.com, Hey Diddle Diddle, the Cat and the Fiddle, ... Hey
diddle diddle, the cat and Iha fiddle, The cow jumped over the ...

ancl y ingMeydiddle shtml - 3k - Cached - Similar pages

Figure 1-6. Result page for “diddle diddle hey”

Strategies

Searching all query word permutations is a cumbersome thought at best.
That said, it can be surprisingly effective in squeezing a few more results
from the Google index. If you decide to do so, bear the following strategies
in mind:

* Try phrases with and without quotes.

* Make your query as specific as possible, leaving fewer words and thus
fewer possible permutations.

* Try the more obvious permutation before the nonsensical—hey diddle
diddle before diddle hey diddle.

Repetition Matters

Repetition matters when it comes to keywords weighting your queries.

Using keywords multiple times can have an impact on the types and num-
ber of results you get.

Don’t believe me? Try searching for internet. At the time of this writing
Microsoft was the first result. Now try searching for internet internet. At
this writing Yahoo! popped to the top. Experiment with this using other
words, putting additional query words in if you want to. You'll see that mul-
tiple query words can have an impact on how the search results are ordered
and in the number of results returned.

22 | Searching Google

Repetition Matters

How Does This Work?

Google doesn’t talk about this on their web site, so this hack is the result of
some conjecture and much experimentation.

First, enter a word one time. Let’s use clothes as an example (Figure 1-7).
This returns 7,050,000 results, the top being a site called “The Emperor’s
New Clothes.” Let’s add another clothes to the query (Figure 1-8). The num-
ber of results drops dramatically to 3,490,000, and the first result is for a
clothing store. Some different finds move their way up into the top 10 results.

t 7,050,000 5
lot! the best stores at 24HourMall.com Sponsored Link
mzﬂ-hullldl.oom The Internet Mall, Shop Here Nowl "
Categories: Shopping > Sports > Skating > Clothes and Costumes Shopping > Clothing > Casual
The Emperor's New Clothes i
Subscribe to our eMallst. Receive Emperor's Clothes aricles. * ARTICLES .. __Sponsored Links
Colonel.).
From Emperor's Clothes to all our readers: Happy New Year! ... i mﬂ?&gﬁ;ﬁx %eh;g;é'
Description: Polemical online journal campaigning against the alleged militarism of ;m.ic'pmn.y.cém
the United States and its allies. BTG m—
Category: Society > Issues > ... > War Crimes > Yugoslavia > NATO N B
emparors-clothes.com/ - 84k - Oct. 19, 2002 - Cachad - Similar pages i =
‘Find inks o hundreds of clothing
To Emperors Clothes and apperel stores. (affikate)
The Elrpuor'i New Clothes. Piercing a Fog of Lies. ENTER. www_onlineclothingstores.com
P findexe him - 2k - Cached - Similar pages {interest m—
[More resuls rom smperors-ciothes.com] A
. . /Clothing Stores

‘Weicome to the Clean Clothes Campaign website . Selectirom a varietvof stores and

Figure 1-7. Result page for “clothes”

Why stop now? Try clothes clothes clothes (Figure 1-9). The result order
and results themselves remain the same.

A Theory

Here’s a theory: Google searches for as many matches for each word or
phrase you specify, stopping when it can’t find any more. So clothes
clothes returns pages with two occurrences of the word “clothes.” clothes
clothes clothes returns the same results, because Google can’t do any bet-
ter than two occurrences of “clothes” in any one page.

So What?

Because Google discards non-matching multiple instances of the same query
word, you can use this search as a weighting system for your searches. For

Searching Google | 23

Repetition Matters

., Advanced Search Language Tools Search Tips

Preferences

| ' 3 - Sponsored Link
T 24HourMaI com Tha Immet MHL Shop Hm NM
Categories: ing > Sports > Skating > Clothes ing > ing > Casual
News: Why butier kept ;!:1(31:1:1;: - :Janssdlrhracﬁw - 17 hours ago Sponsored Links
How to wear clothes - e 2002 I
New! Try Google News: Search news for clothes clothes or browse the latest Clothing Stores
headlines ;Sslac:fru‘na\rmswufs‘mlesmd
{exclusive maney saving offers
Boys Clothes, Boys Clothing Oniine Childrens Clothes - For The ... st
... We offer classic clothes for everyday, as well as more exclusive d but e
all with the same emphasis on comfort and sase of wear that boys demand. .. See your message here...
Description: Oﬂon clothing forboyx aged 4-14. Prnﬁh :ﬂeg.n H\dﬂbﬂppl‘lg cart.
Category: R al > Eun > > Cl

www.clothesdboys.co.uk/ - 1B‘I(ou.w.moz - Cached - M

The Emperor's New Clothes
Subscribe to our eMail list. Receive Emperor's Clothes articles. * ARTICLES ... Colonel].

From Emperor's Clothes to all our readers: Happy New Year| ...

Figure 1-8. Result page for “clothes clothes”

Advanced Search Preferences Language Tools Search Tips

Google T —

5 clothes clothes

- Find all the best stores at 2 Sponsored Link

www.24HourMall.com The Intemnet Mall, Shop Here Now!
Categories: ing > > ing > ing > ing > Casual
News: Why butler kept Diana's clothes - News Interactive - 17 hours ago P

How to wear clothes - Guardian - 18 Oct 2002 T

: Search news for clothes clothes clothes or browse the | Clothing Stores

Newl! Try G:og‘h News: r cl or browse the e o a var oy of tores and

latest headlines gmlusivn maney saving offers.
Boys Clathes, Boys Clothing Oniine.Childrens Clothes - For The ... N AR Com
... We offer classic clothes for evaryday, as well as more exclusive designs, but :
all with the same emphasis on comfort and ease of wear that boys demand. ... See your message here...

Description; Offers clothing for boys aged 4-14. Profile, catalogue and shopping cart.
ional > Europa > ... > Shopping > Clothing > Chil
www.clothesdboys.co.uk/- 18k - Oct. 19, 2002 - Cached - Similar pages

ror’ hes
Subscribe to our eMail list. Receive Emperor's Clothes articles. * ARTICLES ... Colonel].
From Emperor's Clothes to all our readers: Happy New Yearl ...

Figure 1-9. Result page for “clothes clothes clothes”

example, say you were interested in pipe systems for the gas industry, but
you're more interested in the impact the pipe systems were having on the
gas industry (and less so in companies that happen to sell piping systems for
the gas industry).

24 | Searching Google

Mixing Syntaxes

Search for "pipe systems" gas. Now query for "pipe systems" gas gas. You'll
notice that the focus of your results changes slightly. Now try “pipe
systems" pipe pipe gas gas. Note how the focus slants back the other way.

Based on observations, here are a few guidelines for using multiple itera-
tions of the same query term:

» Multiple iterations of product names or nouns seem to favor shopping
sites. This is especially true if the name or noun is plural (e.g., scooters).

* Just because you're not getting different results for the second or third
iteration doesn’t mean you won'’t get different results for the fourth or
fifth iteration (e.g., successive occurrences of baseball).

« Remember that Google has a limit of 10 words per query, so relegate
repetition to only those situations where you can spare the query room.

See Also
* Permuting a Query [Hack #62]

Mixing Syntaxes
What combinations of search syntaxes will and will not fly in your Google
search?

There was a time when you couldn’t “mix” Google’s special syntaxes [in “The
Special Syntaxes”l—you were limited to one per query. And while Google
released ever more powerful special syntaxes, not being able to combine
them for their composite power stunted many a search.

This has since changed. While there remain some syntaxes that you just
can’t mix, there are plenty to combine in clever and powerful ways. A
thoughtful combination can do wonders to narrow a search.

The Antisocial Syntaxes

The antisocial syntaxes are the ones that won’t mix and should be used indi-
vidually for maximum effect. If you try to use them with other syntaxes, you
won’t get any results.

The syntaxes that request special information—stocks: [Hack #18],
rphonebook:, bphonebook:, and phonebook: [Hack #171—are all antisocial syn-
taxes. You can’t mix them and expect to get a reasonable result.

The other antisocial syntax is the link: syntax. The link: syntax shows you
which pages have a link to a specified URL. Wouldn’t it be great if you

Searching Google | 25

TR o

could specify what domains you wanted the pages to be from? Sorry, you
can’t. The link: domain does not mix.

For example, say you want to find out what pages link to O’Reilly & Associ-
ates, but you don’t want to include pages from the .edu domain. The query
link:www.oreilly.com -site:edu will not work, because the link: syntax
doesn’t mix with anything else. Well, that’s not quite correct. You will get
results, but they’ll be for the phrase “link www.oreilly.com” from domains
that are not .edu.

If you want to search for links and exclude the domain .edu, you have a cou-
ple of options. First, you can scrape the list of results [Hack #44] and sort it in a
spreadsheet to remove the .edu domain results. If you want to try it through
Google, however, there’s no command that will absolutely work. This one’s
a good one to try:

inanchor:oreilly -inurl:oreilly -site:edu

This search looks for the word O’Reilly in anchor text, the text that’s used
to define links. It excludes those pages that contain O’Reilly in the search
result (e.g., oreilly.com). And, finally, it excludes those pages that come
from the .edu domain.

But this type of search is nowhere approaching complete. It only finds those
links to O’Reilly that include the string oreilly—if someone creates a link like
Camel Book, it won’t be found by
the query above. Furthermore, there are other domains that contain the
string oreilly, and possibly domains that link to oreilly that contain the string
oreilly but aren’t oreilly.com. You could alter the string slightly, to omit the
oreilly.com site itself, but not other sites containing the string oreilly:

inanchor:oreilly -site:oreilly.com -site:edu
But you’d still be including many O’Reilly sites that aren’t at O’Reilly.com.

So what does mix? Pretty much everything else, but there’s a right way and a
wrong way to do it.

How Not to Mix Syntaxes

* Don’t mix syntaxes that will cancel each other out, such as:
site:ucla.edu -inurl:ucla
Here you’re saying you want all results to come from ucla.edu, but that
site results should not have the string “ucla” in the results. Obviously
that’s not going to result in very much.
* Don’t overuse single syntaxes, as in:

site:com site:edu

26 | Searching Google

Mixing Syntaxes &

While you might think you’re asking for results from either .com or .edu
sites, what you’re actually saying is that site results should come from
both simultaneously. Obviously a single result can come from only one
domain. Take the example perl site:edu site:com. This search will get
you exactly zero results. Why? Because a result page cannot come from
a .edu domain and a .com domain at the same time. If you want results
from .edu and .com domains only, rephrase your search like this:
perl (site:edu | site:com)

With the pipe character (|), you're specifying that you want results to
come either from the .edu or the .com domain.

Don’t use allinurl: or allintitle: when mixing syntaxes. It takes a
careful hand not to misuse these in a mixed search. Instead, stick to
inurl: or intitle:. If you don’t put allinurl: in exactly the right place,
you’ll create odd search results. Let’s look at this example:

allinurl:perl intitle:programming
At first glance it looks like you're searching for the string “perl” in the
result URL, and the word “programming” in the title. And you're right,

this will work fine. But what happens if you move allinurl: to the right
of the query?

intitle:programming allinurl:perl
This won’t get any results. Stick to inurl: and intitle:, which are
much more forgiving of where you put them in a query.
Don’t use so many syntaxes that you get too narrow, like:
title:agriculture site:ucla.edu inurl:search

You might find that it’s too narrow to give you any useful results. If
you're trying to find something that’s so specific that you think you’ll
need a narrow query, start by building a little bit of the query at a time.
Say you want to find plant databases at UCLA. Instead of starting with
the query:

title:plants site:ucla.edu inurl:database
Try something simpler:

databases plants site:ucla.edu

and then try adding syntaxes to keywords you’ve already established in
your search results:

intitle:plants databases site:ucla.edu
or:
intitle:database plants site:ucla.edu

Searching Google | 27

- Mixing Syntaxes

How to Mix Syntaxes

If you’re trying to narrow down search results, the intitle: and site: syn-
taxes are your best bet.

Titles and sites. For example, say you want to get an idea of what databases
are offered by the state of Texas. Run this search:

intitle:search intitle:records site:tx.us

You'll find 32 very targeted results. And of course, you can narrow down
your search even more by adding keywords:

birth intitle:search intitle:records

site:tx.us
It doesn’t seem to matter if you put plain keywords at the beginning or the
end of the search query; I put them at the beginning, because they’re easier
to keep up with.

The site: syntax, unlike site syntaxes on other search engines, allows you to
get as general as a domain suffix (site:com) or as specific as a domain or sub-
domain (site:thomas.loc.gov). So if you're looking for records in El Paso,
you can use this query:

intitle:records site:el-paso.tx.us

and you’ll get seven results.

Title and URL. Sometimes you’ll want to find a certain type of information,
but you don’t want to narrow by type. Instead, you want to narrow by
theme of information—say you want help or a search engine. That’s when
you need to search in the URL.

The inurl: syntax will search for a string in the URL but won’t count find-
ing it within a larger URL. So, for example, if you search for inurl:research,
Google will not find pages from researchbuzz.com, but it would find pages
from www.research-councils.ac.uk.

Say you want to find information on biology, with an emphasis on learning
or assistance, Try:
intitle:biology inurl:help

This takes you to a manageable 162 results. The whole point is to get a num-
ber of results that finds you what you need but isn’t so large as to be over-
whelming. If you find 162 results overwhelming, you can easily add the
site: syntax to the search and limit your results to university sites:

intitle:biology inurl:help site:edu

28 | Searching Google

Hacking Google URLS |

But beware of using so many special syntaxes, as I mentioned above, that
you detail yourself into no results at all.

All the possibilities. It’s possible that I could write down every possible syn-
tax-mixing combination and briefly explain how they might be useful, but if
I did that, I'd have no room for the rest of the hacks in this book.

Experiment. Experiment a lot. Keep in mind constantly that most of these
syntaxes do not stand alone, and you can get more done by combining them
than by using them one at a time.

Depending on what kind of research you do, different patterns will emerge
over time. You may discover that focusing on only PDF documents
(filetype:pdf) finds you the results you need. You may discover that you
should concentrate on specific file types in specific domains (filetype:ppt
site:tompeters.com). Mix up the syntaxes as many ways as is relevant to
your research and see what you get.

ﬁ Hacking Google URLs

Hacking the URL Google hands you in response to a search.

When you think of hacks you might think of making a cool search form or
performing a particularly intricate search. But you can also hack search
results by hacking the URL that Google returns after a search. There’s at
least one thing you can do by hacking the URL that you can do no other
way, and there are quick tricks you can do that might save you a trip back to
the advanced preferences page otherwise.

Anatomy of a URL

Say you want to search for three blind mice. Your result URL will vary
depending on the preferences you’ve set, but the results URL will look
something like this:

http://www.google.com/search?num=100&hl=endq=%22three+blind+mice%22

The query itself—8q=%22three+blind+mice%22, %22 being a URL-encoded "
(double quote)—is pretty obvious, but let’s break down what those extra
bits mean.

num=100 refers to the number of search results to a page, 100 in this case.
Google accepts any number from 1 to 100. Altering the value of num is a nice
shortcut to altering the preferred size of your result set without having to
meander over to the Advanced Search page and rerun your search.

Searching Google | 29

. Hacking Google URLs

Don’t see the num= in your query? Simply append it to your query URL using
any value between 1 and 100.

You can add or alter any of the modifiers described here by
simply appending them to the URL or changing their val-
ues—the part after the = (equals)—to something within the
accepted range for the modifier in question.

hl=en means the language interface—the language in which you use Google,
reflected in the home page, messages, and buttons—is in English (at least
mine is). Google’s Language Tools page [Hack #2] provides a list of language
choices. Run your mouse over each and notice the change reflected in the
URL; the one for Pig Latin looks like this:

http://www.google.com/intl/xx-piglatin/

The language code is the bit between intl/ and the last /, xx-piglatin in
this case. Apply that to the search URL at hand:

hl=xx-piglatin

What if you put multiple &h1 modifiers on a result URL? Google uses which-
ever one comes last. While it makes for confusing URLs, this means you can
always resort to laziness and add an extra modifier at the end rather than
editing what’s already there.

There are a couple more modifiers that, appended to your URL, may pro-
vide some useful modifications of your results:

as_qdr=mx
Specifies the maximum age of the search results, in months. x is any
number between 1 and 12; I find that numbers between 1 and 6 are best.

safe=off
Means the SafeSearch filter is off. The SafeSearch filter removes search
results mostly of a sexually explicit nature. safe=on means the
SafeSearch filter is on.

Hacking Google’s URL may not seem like the most intuitive way to get
results quickly, but it’s much faster than reloading the advanced search form
and in one case (the “months old” modifier) it’s the only way to get at a par-
ticular set of results.

30 | Searching Google

i

Hacking Google Search Forms :

Hacking Google Search Forms
Build your own personal, task-specific Google search form.

If you want to do a simple search with Google, you don’t need anything but
the standard Simple Search form (the Google home page). But if you want to
craft specific Google searches you’ll be using on a regular basis or providing
for others, you can simply put together your own personalized search form.

Start with your garden variety Google search form; something like this will
do nicely:

<l-- Search Google -->

<form method="get" action="http://www.google.com/search">

<input type="text" name="q" size=31 maxlength=255 value="">

<input type="submit" name="sa" value="Search Google">

</form>

<!-- Search Google -->

This is a very simple search form. It takes your query and sends it directly to
Google, adding nothing to it. But you can embed some variables to alter

your search as needed. You can do this two ways: via hidden variables or by
adding more input to your form.

Hidden Variables

As long as you know how to identify a search option in Google, you can add
it to your search form via a hidden variable. The fact that it’s hidden just
means that form users will not be able to alter it. They won’t even be able to
see it unless they take a look at the source code. Let’s take a look at a few
examples.

anywhere between the opening and closing <form> tags, it’s
rather tidy and useful to keep them all together after all the
visible form fields.

\ While it’s perfectly legal HTML to put your hidden variables

File type
As the name suggests, file type specifies filtering your results by a partic-
ular file type (e.g., Word DOC, Adobe PDF, PowerPoint PPT, plain text
TXT). Add a PowerPoint file type filter, for example, to your search
form like so:

<input type="hidden" name="as_filetype" value="PPT">

Searching Google | 31

Hacking Google Search Forms

Site search
Narrows your search to specific sites. While a suffix like .com will work
just fine, something more fine-grained like the example.com domain is
probably better suited:
<input type="hidden" name="as_sitesearch" value="example.com">
Date searching
Narrows your search to pages indexed within the stated number of
months. Acceptable values are between 1 and 12. Restricting our results
to items indexed only within the last seven months is just a matter of
adding:
<input type="hidden" name="as_qdr" value="m7">
Number of results
Specifies the number of results you’d like appearing on each page, speci-
fied as a value of num between 1 and 100; the following asks for 50 per
page:
<input type="hidden" name="num" value="50">
What would you use this for? If you’re regularly looking for an easy way to
create a search engine that finds certain file types in a certain place, this
works really well. If this is a one-time search, you can always just hack the
results URL [Hack #9], tacking the variables and their associated values on to
the URL of the results page.

Mixing Hidden File Types: An Example

The site tompeters.com (http://www.tompeters.com/) contains several Power-
Point (PPT) files. If you want to find just the PowerPoint files on their site,
you’d have to figure out how their site search engine works or pester them
into adding a file type search option. But you can put together your own
search form that finds PowerPoint presentations on the tompeters.com site.

Even though you’re creating a handy search form this way,
you're still resting on the assumption that Google’s indexed
most or all of the site you're searching. Until you know oth-
erwise, assume that any search results Google gives you are
incomplete.

Your form looks something like:

<!-- Search Google for tompeters.com PowerPoints --»
<form method="get" action="http://www.google.com/search">

<input type="text" name="q" size=31 maxlength=255 value="">
<input type="submit" name="sa" value="Search Google">

32 | Searching Google

Hacking Google Search Forms

<input type="hidden" name="as_filetype" value="ppt">

<input type="hidden" name="as_sitesearch” value="tompeters.com">
<input type="hidden" name="num" value="100">

</form>

<!-- Search Google for tompeters.com PowerPoints -->

Using hidden variables is handy when you want to search for one particular
thing all the time. But if you want to be flexible in what you’re searching for,
creating an alternate form is the way to go.

Creating Your Own Google Form

Some variables best stay hidden; however for other options, you can let your
form users be much more flexible.

Let’s go back to the previous example. You want to let your users search for
PowerPoint files, but you also want them to be able to search for Excel files
and Microsoft Word files. In addition, you want them to be able to search
tompeters.com, the State of California, or the Library of Congress. There are
obviously various ways to do this user-interface-wise; this example uses a
couple of simple pull-down menus:

<!-- Custom Google Search Form-->

<form method="get" action="http://www.google.com/search">
<input type="text" name="q" size=31 maxlength=255 value="">

Search for file type:

<select name="as_filetype">

<option value="ppt">PowerPoint</option>

<option value="x1s">Excel</option>

<option value="doc">Word</option>

</select>

Search site:

<select name="as_sitesearch"></option>

<option value="tompeters.com">TomPeters.com</option>
<option value="state.ca.us">State of California</option>
<option value="loc.gov">The Library of Congress</option>
</select>

<input type="hidden" name="num" value="100">

</form>

¢!-- Custom Google Search Form--»

FaganFinder (http://www.faganfinder.com/engines/google.shtml) is a wonder-
ful example of a thoroughly customized form.

Date-Range Searching

i1

Date-Range Searching
An undocumented but powerful feature of Google’s search and API is the
ability to search within a particular date range.

Before delving into the actual use of date-range searching, there are a few
things you should understand. The first is this: a date-range search has noth-
ing to do with the creation date of the content and everything to do with the
indexing date of the content. If I create a page on March 8, 1999, and Goo-
gle doesn’t get around to indexing it until May 22, 2002, for the purposes of
a date-range search, the date in question is May 22, 2002.

The second thing is that Google can index pages several times, and each
time it does so the date on it changes. So don’t count on a date-range search
staying consistent from day to day. The daterange: timestamp can change
when a page is indexed more than one time. Whether it does change
depends on whether the content of the page has changed.

Third, Google doesn’t “stand behind” the results of a search done using the
date-range syntaxes. So if you get a weird result, you can’t complain to
them. Google would rather you use the date-range options on their
advanced search page, but that page allows you to restrict your options only
to the last three months, six months, or year.

The daterange: Syntax
Why would you want to search by daterange:? There are several reasons:

* It narrows down your search results to fresher content. Google might
find some obscure, out-of-the-way page and index it only once. Two
years later this obscure, never-updated page is still turning up in your
search results. Limiting your search to a more recent date range will
result in only the most current of matches.

* It helps you dodge current events. Say John Doe sets a world record for
eating hot dogs and immediately afterward rescues a baby from a burn-
ing building. Less than a week after that happens, Google’s search
results are going to be filled with John Doe. If you’re searching for infor-
mation on (another) John Doe, babies, or burning buildings, you'll
scarcely be able to get rid of him.

However, you can avoid Mr. Doe’s exploits by setting the date-range
syntax to before the hot dog contest. This also works well for avoiding
recent, heavily covered news events such as a crime spree or a forest fire
and annual events of at least national importance such as national elec-
tions or the Olympics.

34 | Searching Google

Date-Range Searching -

* It allows you to compare results over time; for example, if you want to
search for occurrences of “Mac OS X” and “Windows XP” over time.

Of course, a count like this isn’t foolproof; indexing dates change over
time. But generally it works well enough that you can spot trends.

Using the daterange: syntax is as simple as:
daterange:startdate-enddate

The catch is that the date must be expressed as a Julian date, a continuous
count of days since noon UTC on January 1, 4713 BC. So, for example, July
8, 2002 is Julian date 2452463.5 and May 22, 1968 is 2439998.5. Further-
more, Google isn’t fond of decimals in its daterange: queries; use only inte-
gers: 2452463 or 2452464 (depending on whether you prefer to round up or
down) in the previous example.

There are plenty of places you can convert Julian dates
online. We've found a couple of nice converters at the U.S.
Naval Observatory Astronomical Applications Department
(http:/laa.usno.navy.mil/data/docs/JulianDate. html) and Mauro
Orlandini’s home page (http://www.tesre.bo.cnr.it/~mauro/JDJ/),
the latter converting either Julian to Gregorian or vice versa.
More may be found via a Google search for julian date
(http://www.google.com/search?hl=en&lr=Eie=1SO-8859-
1&q=julian+date).

You can use the daterange: syntax with most other Google special syntaxes,
with the exception of the link: syntax, which doesn’t mix [Hack #8] well with
other special syntaxes [in “The Special Syntaxes”) and the Google’s Special Collec-
tions [Chapter 2] (e.g., stocks: and phonebook:).

daterange: does wonders for narrowing your search results. Let’s look at a
couple of examples. Geri Halliwell left the Spice Girls around May 27, 1998.
If you wanted to get a lot of information about the breakup, you could try
doing a date search in a ten-day window—Say, May 25 to June 4. That
query would look like this:

"Geri Halliwell" "Spice Girls" daterange:2450958-2450968

At this writing, you’ll get about two dozen results, including several news
stories about the breakup. If you wanted to find less formal sources, search
for Geri or Ginger Spice instead of Geri Halliwell.

That example’s a bit on the silly side, but you get the idea. Any event that
you can clearly divide into before and after dates—an event, a death, an
overwhelming change in circumstances—can be reflected in a date-range
search.

Searching Google | 35

- Date-Range Searching

You can also use an individual event’s date to change the results of a larger
search. For example, former ImClone CEO Sam Waksal was arrested on
June 12, 2002. You don’t have to search for the name Sam Waskal to get a
very narrow set of results for June 13, 2002:

imclone daterange:2452439-2452439

Similarly, if you search for imclone before the date of 2452439, you’'ll get
very different results. And as an interesting exercise, try a search that reflects
the arrest, only date it a few days before the actual arrest:

imclone investigated daterange:2452000-2452435

This is a good way to find information or analysis that predates the actual
event, but that provides background that might help explain the event itself.
(Unless you use the date-range search, usually this kind of information is
buried underneath news of the event itself.)

But what about narrowing your search results based on content creation
date?

Searching by Content Creation Date

Searching for materials based on content creation is difficult. There’s no
standard date format (score one for Julian dates), many people don’t date
their pages anyway, some pages don’t contain date information in their
header, and still other content management systems routinely stamp pages
with today’s date, confusing things still further.

We can offer few suggestions for searching by content creation date. Try
adding a string of common date formats to your query. If you wanted some-
thing from May 2003, for example, you could try appending:

("May * 2003" | "May 2003" | 05/03 | 05/*/03)

A query like that uses up most of your ten-query limit, however, so it’s best
to be judicious—perhaps by cycling through these formats one a time. If any
one of these is giving you too many results, try restricting your search to the
title tag of the page.

If you're feeling really lucky you can search for a full date, like May 9, 2003.
Your decision then is if you want to search for the date in the format above
or as one of many variations: 9 May 2003, 9/5/2003, 9 May 03, and so forth.
Exact-date searching will severely limit your results and shouldn’t be used
except as a last-ditch option.

When using date-range searching, you'll have to be flexible in your think-
ing, more general in your search than you otherwise would be (because the
date-range search will narrow your results down a lot), and persistent in

36 | Searching Google

Using Full-Word Wildcards

your queries because different dates and date ranges will yield very different
results. But you’ll be rewarded with smaller result sets that are focused on
very specific events and topics.

i Understanding and Using Julian Dates

Get to know and use Julian Dates.

Date-based searching good! Date-based searching with Julian dates annoy-
ing (for a human, anyway)!

The Julian date is the number of days that have passed since January 1, 4713
BC. Unlike Gregorian dates, which begin at midnight, Julian days begin at
noon, making them useful for astronomers.

A Julian date is just one number. It’s not broken up into month, day, and
year. That makes it problematic for humans but handy for computer pro-
gramming, because to change dates, you simply have to add and subtract
from one number, and not worry about month and year changes.

To use Google’s date-range syntax in Perl, you’ll need a way to convert the
computer’s local time to Julian. You can use the module Time::JulianDay,
which offers a variety of ways to manipulate local time in Julian format. You
can get the module and more information at http://search.cpan.org/
search?query=Time%3A%3A]JulianDay.

Hacks that use the Julian date format and date-range searching pop up
throughout this book; start by learning more about using the date-range
syntax [Hack #11). Also included are hacks for building recent searches into a
customized form [Hack #42), and date-range searches with a client-side applica-

tion [Hack #60],

Using Full-Word Wildcards

Google’s full-word wildcard stands in for any keyword in a query.

413

Some search engines support a technique called “stemming.” Stemming is
adding a wildcard character—usually * (asterisk) but sometimes ? (question
mark)—to part of your query, requesting the search engine return variants
of that query using the wildcard as a placeholder for the rest of the word at
hand. For example, moon* would find: moons, moonlight, moonshot, etc.

Google doesn’t support stemming.

Instead, Google offers the full-word wildcard. While you can’t have a wild-
card stand in for part of a word, you can insert a wildcard (Google’s wild-
card character is *) into a phrase and have the wildcard act as a substitute

Searching Google | 37

~ inurl: Versus site:

for one full word. Searching for "three * mice", therefore, finds: three blind
mice, three blue mice, three green mice, etc.

What good is the full-word wildcard? It’s certainly not as useful as stem-
ming, but then again, it’s not as confusing to the beginner. One * is a stand-
in for one word; two * signifies two words, and so on. The full-word wild-
card comes in handy in the following situations:

* Avoiding the 10 word limit [Hack #5] on Google queries. You’ll most fre-
quently run into these examples when you're trying to find song lyrics
or a quote; plugging the phrase “Fourscore and seven years ago, our
fathers brought forth on this continent” into Google will search only as
far as the word “on,” every word after that will be ignored by Google.

* Checking the frequency of certain phrases and derivatives of phrases,
like: intitle:"methinks the * doth protest toomuch" and intitle:"the
* of Seville".

* Filling in the blanks on a fitful memory. Perhaps you remember only a
short string of song lyrics; search only using what you remember rather
than randomly reconstructed full lines.

Let’s take as an example the disco anthem “Good Times” by Chic. Consider
the line: “You silly fool, you can’t change your fate.”

Perhaps you’ve heard that lyric, but you can’t remember if the word “fool” is
correct or if it’s something else. If you’re wrong (if the correct line is, for
example, “You silly child, you can’t change your fate”), your search will find
no results and you’ll come away with the sad conclusion that no one on the
Internet has bothered to post lyrics to Chic songs.

The solution is to run the query with a wildcard in place of the unknown
word, like so:

"You silly *, you can't change your fate"

You can use this technique for quotes, song lyrics, poetry, and more. You
should be mindful, however, to include enough of the quote that you find
unique results. Searching for "you * fool" will glean you far too many false
hits.

ﬁ g inurl: Versus site:
#1 4 Use inurl: syntax to search site subdirectories.

The site: special syntax is perfect for those situations in which you want to
restrict your search to a certain domain or domain suffix like “example.

com,” “www.example.org,” or “edu”: site:edu. But it breaks down when

38 | Searching Google

inurl: Versus site: -

you're trying to search for a site that exists beneath the main or default site
(i.e., in a subdirectory like /~sam/album/).

For example, if you’re looking for something below the main GeoCities site,
you can’t use site: to find all the pages in http://www.geocities.com/Heartland/
Meadows/6485/; Google will return no results. Enter inurl:, a Google special
syntax [in “The Special Syntaxes”] for specifying a string to be found in a resultant
URL. That query, then, would work as expected like so:

inurl:www.geocities.com/Heartland/Meadows/6485/

While the http:// prefix in a URL is summarily ignored by
Google when used with site:, search results come up short
when including it in a inurl: query. Be sure to remove pre-
fixes in any inurl: query for the best (read: any) results.

You'll see that using the inurl: query instead of the site: query has two
immediate advantages:

* You can use inurl: by itself without using any other query words
(which you can’t do with site:).

* You can use it to search subdirectories.

How Many Subdomains?

You can also use inurl: in combination with the site: syntax to get infor-
mation about subdomains. For example, how many subdomains does
O'Reilly.com really have? You can’t get that information via the query site:
oreilly.com, but neither can you get it just from the query inurl:"*.
oreilly.com” (because that query will pick up mirrors and other pages con-
taining the string oreilly.com that aren’t at the O’Reilly site).

However, this query will work just fine:
site:oreilly.com inurl:"*.oreilly” -inurl:“www.oreilly"

This query says to Google, “Look on the site O’Reilly.com with page URLs
that contain the string *.oreilly’ (remember the full-word wildcard? MHack #13))
but ignore URLs with the string ‘www.oreilly’” (because that’s a subdomain
you're already very familiar with).

Searching Google | 39

R
i

Checking Spelling

Checking Spelling
Google sometimes takes the liberty of “correcting” what it perceives is a
spelling error in your query.

If you've ever used other Internet search engines, you’ll have experienced
what I call “stupid spellcheck.” That’s when you enter a proper noun and
the search engine suggests a completely ludicrous query (“Elvish Parsley” for
“Elvis Presley”). Google’s quite a bit smarter than that.

When Google thinks it can spell individual words or complete phrases in
your search query better than you can, it’ll offer you a suggested “better”
search, hyperlinking it directly to a query. For example, if you search for
hydrocephelus, Google will suggest that you search instead for
hydrocephalus.

Suggestions aside, Google will assume you know of what you speak and
return your requested results. Provided, that is, that your query gleaned
results.

If your query found no results for the spellings you provided and Google
believes it knows better, it will automatically run a new search on its own
suggestions. Thus, a search for hydracefallus finding (hopefully) no results
will spark a Google-initiated search for hydrocephalus.

Mind you, Google does not arbitrarily come up with its suggestions, but
builds them based on its own database of words and phrases found while
indexing the Web. If you search for nonsense like garafghafdghasdg, you'll
get no results and be offered no suggestions as Figure 1-10 shows.

' This is a lovely side effect and quick and easy way to check
the relative frequency of spellings. Query for a particular
spelling, making note of the number of results. Then click on
Google’s suggested spelling and note the number of results.

It’s surprising how close the counts are sometimes, indicat-
ing an oft misspelled word or phrase.

Embrace Misspellings

Don’t make the mistake of automatically dismissing the proffered results
from a misspelled word, particularly a proper name. I've been a fan of car-
toonist Bill Mauldin for years now, but I continually misspell his name as
“Bill Maudlin.” And judging from a quick Google search I'm not the only
one. There is no law saying that every page must be spellchecked before it
goes online, so it’s often worth taking a look at results despite misspellings.

40 | Searching Google

Checking Spelling 4

Your search - garafghafdghasdg - did not match any documents.
No pages were found containing "garafghafdghasdg"™.

Suggestions:

- Make sure all words are spelled comrectly.
- Try different keywords.
- Try more general keywords.

Also, you can try Google Answers for expert help with your search.

Figure 1-10. A search that yields no suggestions

As an experiment, try searching for two misspelled words on a related topic,
like ventriculostomy hydrocephalis. What kind of information did you get?
Could the information you got, if any, be grouped into a particular online
“genre”?

At this writing, the search for ventriculostomy hydrocephalis gets only two
results. Both of them are for a guestbook at a Developmental (Pediatric)
Neurosurgery Unit at Massachusetts General Hospital/Harvard University.
The content here is generally from people dealing with various neurosurgi-
cal problems. Again, there is no law that says all web materials, especially
informal ones like guest book communications, have to be spellchecked.

Use this to your advantage as a researcher. When you're looking for layman
accounts of illness and injury, the content you desire might actually be more
often misspelled than not. On the other hand, when looking for highly tech-
nical information or references from credible sources, filtering out mis-
spelled queries will bring you closer to the information you seek.

Searching Google | 41

- Consulting the Dictionary

Consulting the Dictionary

E #1 6 Google, in addition to its own spellchecking index, provides hooks into
Dictionary.com.

Google’s own spellchecking [Hack #15] is built upon its own word and phrase
database gleaned while indexing web pages. Thus it provides suggestions for
lesser known proper names, phrases, common sentence constructs, etc.
Google also offers a definition service powered by Dictionary.com (http://
www.dictionary.com/). Definitions, while coming from a credible source and
augmented by various specialty indexes, can be more limited.

Run a search. You’ll notice on the results page the phrase “Searched the web
for [query words].” If the query words would appear in a dictionary, they
will be hyperlinked to a dictionary definition. Identified phrases will be
linked as a phrase; for example, the query "jolly roger" will allow you to
look up the phrase “jolly roger.” On the other hand, the phrase "computer
legal" will allow you to look up the separate words “computer” and “legal.”

The definition search will sometimes fail on obscure words, very new words,
slang, and technical vocabularies (otherwise known as specialized slang). If
you search for a word’s meaning and Google can’t help you, try enlisting the
services of a metasearch dictionary, like OneLook (http://www.onelook.com/)
which indexes over 4 million words in over 700 dictionaries. If that doesn’t
work, try Google again with one of the following tricks, queryword being the
word you want to find:

* If you're searching for several words—you’re reading a technical man-
ual, for example—search for several of the words at the same time.
Sometimes you’ll find a glossary this way. For example, maybe you're
reading a book about marketing, and you don’t know many of the
words. If you search for storyboard stet SAU, you'll get only a few
search results, and they’ll all be glossaries.

* Try searching for your word and the word glossary; say, stet glossary.
Be sure to use an unusual word; you may not know what a “spread” is
in the context of marketing but searching for spread glossary will get
you over 300,000 results for many different kinds of glossaries. See
“Google Interface for Translators” [Hack #19] for language translation.

 Try searching for the phrase queryword means or the words What does
queryword mean?.

* If you’re searching for a medical or a technical item, narrow your search
to educational (.edu) sites. If you want a contextual definition for using
equine acupuncture and how it might be used to treat laminitis, try
"equine acupuncture" laminitis.

42 | Searching Google

Consulting the Phonebook -

* site:edu will give you a brief list of results. Furthermore, you'll avoid
book lists and online stores; handy if you're seeking information and
don’t necessarily want to purchase anything. If you're searching for
slang, try narrowing your search to sites like Geocities and Tripod, and
see what happens. Sometimes young people put fan sites and other
informal cultural collections up on free places like Geocities, and using
these you can find many examples of slang in context instead of dry lists
of definitions. There are an amazing number of glossaries on Geocities;
search for glossary site:geocities.com, and see for yourself.

Google’s connection with Dictionary.com means that simple definition
checking is very fast an easy. But even more obscure words can be quickly
found if you apply a little creative thinking.

Consulting the Phonebook
] #1 7 Google makes an excellent phonebook, even to the extent of doing reverse
lookups.

Google combines residential and business phone number information and
its own excellent interface to offer a phonebook lookup that provides list-
ings for businesses and residences in the United States. However, the
search offers three different syntaxes, different levels of information pro-
vide different results, the syntaxes are finicky, and Google doesn’t provide
any documentation.

The Three Syntaxes
Google offers three ways to search its phonebook:

phonebook
Searches the entire Google phonebook

rphonebook
Searches residential listings only

bphonebook
Searches business listings only

residential and business combined. The more specific
rphonebook: and bphonebook: searches provide up to 30
results per page. For more chance of finding what you’re
looking for, use the appropriate targetted lookup.

\ The result page for phonebook: lookups lists only five results,

Consulting the Phonebook

Using the Syntaxes

Using a standard phonebook requires knowing quite a bit of information
about what you’re looking for: first name, last name, city, and state. Goo-
gle’s phonebook requires no more than last name and state to get it started.
Casting a wide net for all the Smiths in California is as simple as:

phonebook:smith ca

Try giving 411 a whirl with that request! Figure 1-11shows the results of the
query.

@ = E _‘8 Eh“p !M,gwe cm“.?m_!m_ = _._.___.._: B

e L Location Sidebar

Googlemmmm"

(e T Cosmeser)
nith ca

® scarch PhoneBook O Search the Web

Smith House A Womans Program, Smith House Residential, Administration - (415) 487-3672 - San
Francisco, CA 94102 - Yahoo! Maps - MapQuest

Smith House A Womans Program, Smith House Residential, Program - (415) 487-5622 - San
Francisco, CA 94102 - Yahoo! Maps - MapQuest

Wright Salon The, Vicki Smith - (415) 899-8448 - 867 Grant Ave, Novato, CA 84945 - Yahoo! Maps
- MapQuest

Wright Salon The, Tami Smith - (415) 899-8449 - 857 Grant Ave, Novato, CA 94945 - Yahoo! Maps
- MapQuest

Wesley United Methodist Housing Corp, Wesley Smith Villa Apts Manager - (323) 767-7699 - Los
Angeles, CA 90001 - Yahoo! Maps - MapQuest

v
http:/ /www.mapguest.com/maps/map.adp? y=US&address=25010+N+WAT — ' _ 6;

Figure 1-11. phonebook: result page

Notice that, while intuition might tell you there are thousands of Smiths in
California, the Google phonebook says there are only 600. Just as Google’s
regular search engine maxes out at 1000 results, its phonebook maxes out at
600. Fair enough. Try narrowing down your search by adding a first name,
city, or both:

phonebook:john smith los angeles ca

44 | Searching Google

Consulting the Phonebook -

At the time of this writing, the Google phonebook found 3 business and 22
residential listings for John Smith in Los Angeles, California.

Caveats. The phonebook syntaxes are powerful and useful, but they can be
difficult to use if you don’t remember a few things about how they work.

* The syntaxes are case-sensitive. Searching for phonebook:john doe ca
works, while Phonebook: john doe ca (notice the capital P) doesn’t.

* Wildcards don’t work. Then again, they’re not needed; the Google
phonebook does all the wildcarding for you. For example, if you want to
find shops in New York with “Coffee” in the title, don’t bother trying to
envision every permutation of “Coffee Shop,” “Coffee House,” and so
on. Just search for bphonebook: coffee new york ny and you'll get a list of
any business in New York whose name contains the word “coffee.”

* Exclusions don’t work. Perhaps you want to find coffee shops that
aren’t Starbucks. You might think phonebook:coffee -starbucks new
york ny would do the trick. After all, you’re searching for coffee and not
Starbucks, right? Unfortunately not; Google thinks you're looking for
both the words “coffee” and “starbucks,” yielding just the opposite of
what you were hoping for: everything Starbucks in NYC.

* OR doesn’t always work. You might start wondering if Google’s phone-
book accepts OR lookups. You then might experiment, trying to find all
the coffee shops in Rhode Island or Hawaii: bphonebook:coffee (ri |
hi). Unfortunately that doesn’t work; the only listings you’ll get are for
coffee shops in Hawaii. That’s because Google doesn’t appear to see the
(ri | hi) as a state code, but rather as another element of the search. So
if you reversed your search above, and searched for coffee (hi | ri),
Google would find listings that contained the string “coffee” and either
the strings “hi” or “ri.” So you’ll find Hi-Tide Coffee (in Massachusetts)
and several coffee shops in Rhode Island. It’s neater to use OR in the
middle of your query, and then specify your state at the end. For exam-
ple, if you want to find coffee shops that sell either donuts or bagels,
this query works fine: bphonebook:coffee (donuts | bagels) ma. That
finds stores that contain the word coffee and either the word donuts or
the word bagels in Massachusetts. The bottom line: you can use an OR
query on the store or resident name, but not on the location.

Reverse phonebook lookup. All three phonebook syntaxes support reverse
lookup, though its probably best to use the general phonebook: syntax to
avoid not finding what you’re looking for due to its residential or business
classification.

Searching Google | 45

- Tracking Stocks

To do a reverse search, just enter the phone number with area code. Look-
ups without area code won’t work.

phonebook: (707) 829-0515

Note that reverse lookups on Google are a hit-and-miss proposition and
don’t always produce results. If you're not having any luck, you may wish to
use a more dedicated phonebook site like WhitePages.com (http://www.
whitepages.com/).

Finding phonebooks using Google. While Google’s phonebook is a good start-
ing point, its usefulness is limited. If you’re looking for a phone number at a
university or other large institution, while you won’t find the number in
Google, you certainly can find the appropriate phonebook, if it’s online.

If you’re looking for a university phonebook, try this simple search first:
inurl:phone site:university.edu, replacing university.edu with the domain
of the university you’re looking for. For example, to find the online phone-
book of the University of North Carolina at Chapel Hill, you’d search for:

inurl:phone site:unc.edu

If that doesn’t work, there are several variations you can try, again substitut-
ing your preferred university’s domain for unc. edu:

title:"phone book" site:unc.edu

(phonebook | "phone book") lookup faculty staff site:unc.edu

inurl:help (phonebook | "phone book") site:unc.edu
If you’re looking for several university phonebooks, try the same search with
the more generic site:edu rather than a specific university’s domain. There
are also a couple of web sites that list university phonebooks:

* Phonebook Gateway—Server Lookup (http:/www.uiuc.edu/cgi-bin/ph/
lookup) (over 330 phonebooks)

* Phone Book Servers (http://'www.envmed.rochester.edu/www/ph.html)
(over 400 phonebooks)

i Tracking Stocks

A well-crafted Google query will usually net you company information beyond
those provided by traditional stock services.

Among the lesser-known pantheon of Google syntaxes is stocks:. Searching
for stocks:symbol, where symbol represents the stock you're looking for, will
redirect you to Yahoo! Finance (http://finance.yahoo.com/) for details. The
Yahoo! page is actually framed by Google; off to the top-left is the Google
logo, along with links to Quicken, Fool.com, MSN MoneyCentral, and
other financial sites.

46 | Searching Google

Tracking Stocks -

Feed Google a bum stock: query and you’ll still find yourself at Yahoo!
Finance, usually staring at a quote for stock you’ve never even heard of or a
“Stock Not Found” page. Of course, you can use this to your advantage.
Enter stocks: followed by the name of a company you’re looking for (e.g.,
stocks:friendly). If the company’s name is more than one word, choose the
most unique word. Run your query and you’ll arrive at the Yahoo! Finance
stock lookup page shown in Figure 1-12.

Figure 1-12. Yahoo! Finance stock lookup page

Notice the “Look up: FRIENDLY” link; click it and you’ll be offered a list of
companies that match “friendly” in some way. From there you can get the
stock information you want (assuming the company you wanted is on the
list).

Beyond Google for Basic Stock Information

Google isn’t particularly set up for basic stock research. You’ll have to do
your initial groundwork elsewhere, returning to Google armed with a better
understanding of what you’re looking for. I recommend going straight to
Yahoo! Finance (http://finance.yahoo.com) to quickly look up stocks by sym-
bol or company name; there you'll find all the basics: quotes, company pro-
files, charts, and recent news. For more in-depth coverage, I heartily
recommend Hoovers (http://www.hoovers.com). Some of the information is
free. For more depth, you’ll have to pay a subscription fee.

More Stock Research with Google
Try searching Google for:

"Tootsie Roll"

Searching Google | 47

Tracking Stocks

Now add the stock symbol, TR, to your query:
"Tootsie Roll" TR

Aha! Instantly the search results shift to financial information. Now, add the
name of the CEO:

"Tootsie Roll" TR "Melvin Gordon"

You'll end up with a nice, small, targeted list of results, as shown in
Figure 1-13,

oogle Search: “Tootsie Roli* TR “Melvin Gord;

\g‘] @ S 4 [Clhttp: nmwgoogiuorn;searchm-en&ae-lso-ssss-l ﬁ

Back Forward Iluload Stop Location - Sidebar

L le [Tootsie Roll" TR "Melvin Gordon™ | (_ Google Search)

Searched the \M"h for "Tontsm Rcl! TR "Melvin Gordon"™. Results 1 - 7 of about 20. S

- i Sponsored Links
... Tootsie Roll’s products are marketed in a variety of packages
designed to ... TR is engaged Tootsie Roll Candy
in the manufacture and sale of ... Melvin Gordon, 82 ChaiMman | Fie3etver and eacr oo
and CEO, $3.5M. ... _ www.candydirect.com
biz.yahoo.com/pft/tr.html - 23k - Cached - Similar pages Intarast: —

In . - 4 e

... of chairman and CEO Melvin Gordon and president ... D&B &ww. shares of Tootsie Roll:
Business/Credit Reports: Tootsie a unique gift with permanent value,
Roll Industries, Inc. ... Reports) Quantitative Report for TR www.singleshare.com
{(ValuEngine, Inc ... {ntarest: sm—
www.hoovers.com/col/capsule/0/0,2163,11490,00.html - 47k - See your message here..,

| Cached - Similar pages
-M

... Tootsie Roll Industries also makes such well-known candies as Andes mints, Junior
Mints ... The marmied team of chairman and GEOMnGordonandpmsldsntandmO
moneycentral.msn.com/finvestoriresearch/ profile.asp?Symbol=tr - 29k - Cached - ﬂmﬂm

Figure 1-13. Using a stock symbol to limit results

Stock symbols are great “fingerprints” for Internet research. They’re consis-
tent, they often appear along with the company name, and they’re unusal
enough that they do a nice job of narrowing down your search results to rel-
evant information.

48 | Searching Google

——

There are also several words and phrases you can use to narrow down your
search for company related information. Replacing company with the name of
the company you’re looking for, try these:

* For press releases: "company announced”, "company announces", "company
reported”

* For financial information: company "quarterly report", company SEC,
company financials, company "p/e ratio"

* For location information: company parking airport location—doesn’t
always work but sometimes works amazingly well

Google Interface for Translators
Create a customized search form for language translation.

If you do a lot of the same kind of research every day, you might find that a
customized search form makes your job easier. If you spend enough time on
it, you may find that it’s elaborate enough that other people may find it use-

ful as well.

WWW Search Interfaces for Translators (http://www.multilingual.ch) offers
three different tools for finding material of use to translators. Created by
Tanya Harvey Ciampi from Switzerland, the tools are available in AltaVista
and Google flavors. A user-defined query term is combined with a set of spe-
cific search criteria to narrow down the search to yield highly relevant
results.

The first tool, shown in Figure 1-14, finds glossaries. The pull-down menu
finds synonyms of the word “glossary” in various parts of a search result
(title, URL, or anywhere). For example, imagine having to seek out numer-
ous specialized computer dictionaries before finding one containing a defini-
tion of the term “firewall.” This glossary search tool spares you the work by
setting a clear condition: “Find a glossary that contains my term!”

If you're getting too many results for the glossary word you searched for, try
searching for it in the title of the results instead; instead of searching for
firewall, try searching for intitle:firewall.

The second tool, shown in Figure 1-15, finds “parallel texts,” identical pages
in two or more languages, useful for multilingual terminology research.

Finding pages in two or more languages is not easy; one of the few places to
do it easily is with Canadian government pages, which are available in
French and English. This tool provides several difference search combina-
tions between SL (source language) and TL (target language).

Searching Google | 49

- Google Interface for Translators

¥ mulﬁlfngualﬁ
WWW Search Interfaces for
Translators - English

A synonyms of “glossary” in URL - 1
__|synonyms of "glossary” in URL - 2
i} abbreviations for "glossary” in URL

Figure 1-14. WWW Search Interfaces for Translators glossary tool

The first set of searches actually works with AltaVista. It provides several
language sets (English-German, English-Spanish, English-French, etc.) and
gives you options for searching in each one (SL in URL, link to TL, page in
TL country, etc.).

The second set of searches works in Google. Again, there are several lan-
guage sets and several ways to search them (three different ways to search
for the source language in the URL, keyword on the page in the target lan-
guage, etc.). This tool also lets you in some cases specify the country for the
target language (for example, French could be a target language in Canada,
France, or Switzerland).

The third tool, shown in Figure 1-16, finds variations on the word “abbrevi-
ations” in the title or URL of a search result to find lists of abbreviations.

These search tools are available in several languages and do a lot of work for
translators; in fact, they pull out so much information that you might think
they’d require the Google API. But they don’t; the query is generated on the
client side and then passed to Google.

50 | Searching Google

SLinURL-1

| HISLinURL-1 I

SLin URL & site=se - 1
SLinURL & site=se - 2
SL in URL & site=se - 3
SLin URL & site=se - 4

Figure 1-15. WWW Search Interfaces for Translators parallel text tool

Find the long form of your keyword Ji§ |

Figure 1-16. WWW Search Interfaces for Translators abbreviation search tool

Searching Google | 51

Google Interface for Translators

It’s accomplished quite elegantly. First, take a look at the source code for the
form and see if you notice anything, Here’s a hint: pay attention to the form
element names. Notice that this hack integrates search synonyms without hav-
ing to use the Google API or any kind of CGI. Everything’s done via the form.

<!-- Initializing the form and opening a Google search
in a new window -->

<form method="GET" target="_blank"
action="http://www.google.com/search">

<!-- Taking the keyword search specified by the user --»

<input type="text" name="q" size="12">

<select name="q" size="1">

<l-- This is the cool stuff. These options provide several
different modifiers designed to catch glossaries

in Google. -->

<option selected value="intitle:dictionary OR intitle:glossary
OR intitle:lexicon OR intitle:definitions">

synonyms of "glossary" in TITLE - 1</option>

<option value="intitle:terminology OR intitle:vocabulary
OR intitle:definition OR intitle:jargon">

synonyms of "glossary” in TITLE - 2</option>

<option value="inurl:dictionary OR inurl:glossary OR inurl:lexicon
OR inurl:definitions">

synonyms of "glossary" in URL - 1</option>

<option value="inurl:terminology OR inurl:vocabulary

OR inurl:definition

OR inurl:jargon">synonyms of "glossary" in URL - 2</option>
<option value="inurl:dict OR inurl:gloss OR inurl:glos

OR inurl:dic">

abbreviations for "glossary" in URL</option»

<option value="dictionary OR glossary OR lexicon

OR definitions">synonyms of "glossary" ANYWHERE</option>
</select>

<!-- Ending the submission form. -->
<input type="submit" value="Find">
<input type="reset" value="Reset" name="B2">
</form>
The magic at work here is to be found in the following two lines:

<input type="text" name="q" size="12"»

<select name="q" size="1">

Notice that both the query text field and glossary pop-up menu are named
the same thing: name="q". When the form is submitted to Google, the values
of both fields are effectively combined and treated as one query. So entering
a query of dentistry and selecting synonyms of "glossary" in TITLE - 1
from the pop-up menu result in a combined Google query of:

dentistry intitle:dictionary OR intitle:glossary OR intitle:lexicon OR
intitle:definitions

52 | Searching Google

120

Searching Article Archives -

This hack uses customized Google forms as an interface for translators, but
you could use this idea for just about anything. Do you need to find legal
statutes? Financial materials? Information from a particular vertical market?
Anything that has its own specialized vocabulary that you can add to a form
can be channeled into a hack like this. What kind of interface would you
design?

Searching Article Archives

Google serves as a handy searchable archive for back issues of online
publications.

Not all sites have their own search engines, and even the ones that do are
sometimes difficult to use. Complicated or incomplete search engines are
more pain than gain when attempting to search through archives of pub-
lished articles. If you follow a couple of rules, Google is handy for finding
back issues of published resources.

The trick is to use a common phrase to find the information you’re looking
for. Let’s use the New York Times as an example.

Articles from the NYT

Your first intuition when searching for previously published articles from
NYTimes.com might be to simply use site:nytimes.com in your Google
query. For example, if I wanted to find articles on George Bush, why not
use:

"george bush" site:nytimes.com

This will indeed find you all articles mentioning George Bush published on
NYTimes.com. What it won’t find is all the articles produced by the New
York Times but republished elsewhere.

While doing research, keep credibility firmly in mind. If
you’re doing casual research, maybe you don’t need to dou-
ble-check a story to make sure it actually comes from the
New York Times, but if you're researching a term paper,

double-check the veracity of every article you find that isn’t
actually on the New York Times site.

What you actually want is a clear identifier, no matter the site of origin, that
an article comes from the New York Times. Copyright disclaimers are per-
fect for the job. A New York Times copyright notice typically reads:

Copyright 2001 The New York Times Company

Searching Google | 53

. Finding Directories of Information

Of course, this would only find articles from 2001. A simple workaround is
to replace the year with a Google full-word wildcard [Hack #13):

Copyright * The New York Times Company

Let’s try that George Bush search again, this time using the snippet of copy-
right disclaimer instead of the site: restriction:

“Copyright * The New York Times Company" "George Bush"

At this writing, you get over three times as many results for this search as for
the earlier attempt.

Magazine Articles

Copyright disclaimers are also useful for finding magazine articles. For
example, Scientific American’s typical copyright disclaimer looks like this:

Scientific American, Inc. All rights reserved.

(The date appears before the disclaimer, so I just dropped it to avoid having
to bother with wildcards.)

Using that disclaimer as a quote-delimited phrase along with a search
word—hologram, for example—yields the Google query:

hologram "Scientific American, Inc. All rights reserved."

At this writing, you’ll get one result, which seems like a small number for a
general query like hologram. When you get fewer results than you’d expect,
fall back on using the site: syntax to go back to the originating site itself.

hologram site:sciam.com

In this example, you’ll find several results that you can grab from Google’s
cache but are no longer available on the Scientific American site.

Most publications that I've come across have some kind of common text
string that you can use when searching Google for its archives. Usually it’s a
copyright disclaimer and most often it’s at the bottom of a page. Use Goo-
gle to search for that string and whatever query words you're interested in,
and if that doesn’t work, fall back on searching for the query string and
domain name.

JIM Finding Directories of Information

Use Google to find directories, link lists, and other collections of information.

Sometimes you're more interested in large information collections than
scouring for specific bits and bobs. Using Google, there are a couple of dif-
ferent ways of finding directories, link lists (Hack #44], and other information

54 | Searching Google

Finding Directories of Information -

collections. The first way makes use of Google’s full-word wildcards [Hack #13]
and the intitle: [in “The Special Syntaxes”] syntax. The second is judicious use of
particular keywords.

Title Tags and Wildcards

Pick something you’d like to find collections of information about. We’ll use
“trees” as our example. The first thing we’ll look for is any page with the
words “directory” and “trees” in its title. In fact, we’ll build in a little buffer-
ing for words that might appear between the two using a couple of full-word
wildcards [Hack #13) (* characters). The resultant query looks something like
this:

intitle:"directory * * trees”

This query will find “directories of evergreen trees,” “South African trees,”
and of course “directories containing simply trees.”

What if you wanted to take things up a notch, taxonomically speaking, and
find directories of botanical information? You’d use a combination of
intitle: and keywords like so:

botany intitle:"directory of"
And you’d get over 6,600 results. Changing the tenor of the information

might be a matter of restricting results to those coming from academic insti-
tutions. Appending an “edu” site specification brings you to:

botany intitle:"directory of" site:edu

This gets you around 120 results, a mixture of resource directories and,
unsurprisingly, directories of university professors.

Mixing these syntaxes works rather well when you’re searching for some-
thing that might also be an offline print resource. For example:

cars intitle:"encyclopedia of"

This query pulls in results from Amazon and other sites selling car encyclo-
pedias. Filter out some of the more obvious book finds by tweaking the
query slightly:

cars intitle:"encyclopedia of" -site:amazon.com

-inurl:book -inurl:products
The query specifies that search results should not come from Amazon.com,
should not have the word “book” in the URL, or the word “products,”
which eliminates a fair amount of online stores. Play with this query by
changing the word “cars” to whatever you’d like for some interesting finds.

(Of course there are lots of sites selling books online, but when it comes to
injecting “noise” into results when you’re trying to find online resources,

Searching Google | 55

Finding Technical Definitions

research-oriented information, Amazon is the biggest offender. If you're
actually looking for books, try +site:amazon.com instead.)

If mixing syntaxes doesn’t do the trick for the resources you want, there are
some clever keyword combinations that might just do the trick.

Finding Searchable Subject Indexes with Google

There are a few major searchable subject indexes and miriad minor ones that
deal with a particular topic or idea. You can find the smaller subject indexes
by customizing a few generic searches. "what's new" "what’s cool" directory,
while gleaning a a few false results, is a great way of finding searchable subject
indexes. directory "gossamer threads" new is an interesting one. Gossamer
Threads is the creator of a popular link directory program. This is a good way
to find searchable subject indexes without too many false hits. directory
"what’s new" categories cool doesn’t work particularly well, because the
word “directory” is not a very reliable search term; but you will pull in some
things with this query that you might otherwise miss.

Let’s put a few of these into practice:

"what's new" "what's cool" directory phylum

"what's new" "what's cool" directory carburetor

"what's new" "what's cool" directory "investigative journalism"
"what's new" directory categories gardening

directory "gossamer threads" new sailboats

directory "what's new" categories cool "basset hounds"

The real trick is to use a more general word, but make it unique enough that
it applies mostly to your topic and not to many other topics.

Take acupuncture, for instance. Start narrowing it down by topic: what kind
of acupuncture? For people or animals? If for people, what kind of condi-
tions are being treated? If for animals, what kind of animals? Maybe you
should be searching for "cat acupuncture" or maybe you should be search-
ing for acupuncture arthritis. If this first round doesn’t narrow down
search results enough for you, keep going. Are you looking for education or
treatment? You can skew results one way or the other by using the site:
syntax. So maybe you want "cat acupuncture" site:com or arthritis
acupuncture site:edu. Just by taking a few steps to narrow things down, you
can get a reasonable number of search results focused around your topic.

i@ Finding Technical Definitions

Overwhelmed with “geek speak™? Google can help you find the answers.

Specialized vocabularies remain, for the most part, fairly static—words
don’t suddenly change their meaning all that often. Not so with technical

56 | Searching Google

Finding Technical Definitions -

and computer-related jargon. It seems like every 12 seconds someone comes
up with a new buzzword or term relating to computers or the Internet, and
then 12 minutes later it becomes obsolete or means something completely
different—often more than one thing at a time. Maybe it’s not that bad. It
just feels that way.

Google can help you in two ways; by helping you look up words and by
helping you figure out what words you don’t know that you need to know.

Technology Terminology

You've just got out of the conference room and so many new words were
slung at you your head is buzzing. The problem at this point is that you
don’t know if you’ve been hearing slang, hardware/software specific termi-
nology, or general terminology. How do you determine which is which?

As with any new vocabulary, you’re going to have to use contextual clues. In
what part of the conversation was the term used? Was it used most often in
relation to something? Did only one person use the term? It might just be
slang [Hack #4] . [s it written down anywhere? Try to get all the information
about it that you can. If there is no information about it available—your
boss stuck her head in your cubicle and said, “We’re thinking of spending
$20 million on a project using X. What do you think?”—treat it as general
terminology.

Google Glossary

Before you start your search at Google, check and see if Google Labs [Hack #35]
is still offering the Google Glossary (http://labs.google.com/glossary/). Goo-
gle Glossary provides definitions of terms both technical and nontechnical.
If that didn’t turn up anything useful, move on to Google.

Researching Terminology with Google

First things first: for heaven’s sake, please don’t just plug the abbreviation
into the query box! For example, searching for XSLT will net you 900,000
results. While combing through the sites Google turns up may eventually
lead you to a definition, there’s simply more to life than that. Instead, add
"stands +for" to the query if it’s an abbreviation or acronym. "XSLT stands
+for" returns around 29 results, and the very first is a tutorial glossary. If
you're still getting too many results ("XML stands +for" gives you almost
1,000 results) try adding beginners or newbie to the query. "XML stands
+for" beginners brings in 35 results, the first being “XML for beginners.”

If you’re still not getting the results you want, try "what is X?" or "X +is
short +for" or X beginners FAQ, where X is the acronym or term. These

Searching Google | 57

- Finding Technical Definitions

should be regarded as second-tier methods, because most sites don’t tend to
use phrases like “What is X?” on their pages, “X is short for” is uncommon
language usage, and X might be so new (or so obscure) that it doesn’t yet
have an FAQ entry. Then again, your mileage may vary and it’s worth a
shot; there’s a lot of terminology out there.

If you have hardware- or software-specific terminology—as opposed to
hardware- or software-related—try the word or phrase along with anything
you might know about its usage. For example, Dynaloader is software-spe-
cific terminology; it’s a Perl module. That much known, simply give the two
words a spin:

Dynaloader Perl

If the results you're finding are too advanced, assuming you already know
what a Dynaloader is, start playing with the words beginners, newbie, and
the like to bring you closer to information for beginners:

Dynaloader Perl Beginners

If you still can’t find the word in Google, there are a few possible causes:
perhaps it’s slang specific to your area, your coworkers are playing with your
mind, you heard it wrong (or there was a typo on the printout you got), or
it’s very, very new.

Where to Go When It’s Not on Google

Despite your best efforts, you’re not finding good explanations of the termi-
nology on Google. There are a few other sites that might have what you’re
looking for.

Whatis (http://whatis.techtarget.com)
A searchable subject index of computer terminology, from software to
telecom. This is especially useful if you're got a hardware- or software-
specific word, because the definitions are divided up into categories.
You can also browse alphabetically. Annotations are good and are often
cross-indexed.

Webopedia (http://www.pcwebopaedia.com/)
Searchable by keyword or browseable by category. Also has a list of the
newest entries on the front page so you can check for new words.

Netlingo (http://www.netlingo.com/framesindex.html)
This is more Internet-oriented. This site shows up with a frame on the
left containing the words, with the definitions on the right. It includes
lots of cross-referencing and really old slang.

58 | Searching Google

Finding Weblog Commentary

Tech Encyclopedia (http://www.techweb.com/encyclopedia/)
Features definitions and information on over 20,000 words. Top 10
terms searched for are listed so you can see if everyone else is as con-
fused as you are. Though entries had before-the-listing and after-the-list-
ing lists of words, I saw only moderate cross-referencing.

Geek terminology proliferates almost as quickly as web pages. Don’t worry
too much about deliberately keeping up—it’s just about impossible. Instead,
use Google as a “ready reference” resource for definitions.

See Also
 Specialized Vocabularies: Slang and Terminology [Hack #4]
* Google Labs [Hack #35]

E Finding Weblog Commentary

Building queries to search only recent commentary appearing in weblogs.

Time was when you needed to find current commentary, you didn’t turn to
a full-text search engine like Google. You searched Usenet, combed mailing
lists, or searched through current news sites like CNN.com and hoped for
the best.

But as search engines have evolved, they’ve been able to index pages more
quickly than once every few weeks. In fact, Google tunes its engine to more
readily index sites with a high information churn rate. At the same time, a
phenomenon called the weblog (http://www.oreilly.com/catalog/essblogging/)
has arisen, an online site keeps a running commentary and associated links,
updated daily—and indeed, even more often in many cases. Google indexes
many of these sites on an accelerated schedule. If you know how to find them,
you can build a query that searches just these sites for recent commentary.

Finding weblogs. When weblogs first appeared on the Internet, they were
generally updated manually or by using homemade programs. Thus, there
were no standard words you could add to a search engine to find them.
Now, however, many weblogs are created using either specialized software
packages (like Movable Type, http://www.movabletype.org/, or Radio User-
land, http://radio.userland.com/) or as web services (like Blogger, http://www.
blogger.com/). These programs and services are more easily found online
with some clever use of special syntaxes [in “The Special Syntaxes"] or magic words.

For hosted weblogs, the site: syntax makes things easy. Blogger weblogs
hosted at blog*spot (http://www.blogspot.com/) can be found using site:
blogspot.com. Even though Radio Userland is a software program able to

Searching Google | 59

Finding Weblog Commentary

post its weblogs to any web server, you can find the majority of Radio User-
land weblogs at the Radio Userland community server (http://radio.weblogs.
com/) using site:radio.weblogs.com.

Finding weblogs powered by weblog software and hosted elsewhere is more
problematic; Movable Type weblogs, for example, can be found all over the
Internet. However, most of them sport a “powered by movable type” link of
some sort; searching for the phrase "powered by movable type" will, there-
fore, find many of them.

It comes down to magic words typically found on weblog pages, shout-outs, if
you will, to the software or hosting sites. The following is a list of some of
these packages and services and the magic words used to find them in Google:

Blogger
"powered by blogger" or site:blogspot.com
Blosxom
"powered by blosxom"
Greymatter
"powered by greymatter"
Geeklog
"powered by geeklog"
Manila
"a manila site" or site:editthispage.com
Pitas (a service)
site:pitas.com
pMachine
"powered by pmachine”
ujournal (a service)
site:ujournal.org
LiveJournal (a service)
site:livejournal.com

Radio Userland
intitle:"radio weblog" or site:radio.weblogs.com

Using These “Magic Words”

Because you can’t have more than 10 words in a Google query, there’s no
way to build a query that includes every conceivable weblog’s magic words.
It’s best to experiment with the various words, and see which weblogs have
the materials you're interested in.

60 | Searching Google

The Google Toolbar

First of all, realize that weblogs are usually informal commentary and you’ll
have to keep an eye out for misspelled words, names, etc. Generally, it’s bet-
ter to search by event than by name, if possible. For example, if you were
looking for commentary on a potential strike, the phrase "baseball strike"
would be a better search, initially, than a search for the name of the Com-
missioner of Major League Baseball, Bud Selig.

You can also try to search for a word or phrase relevant to the event. For
example, for a baseball strike you could try searching for "baseball strike"
"red sox" (or "baseball strike" bosox)—if you’re searching for informa-
tion on a wildfire and wondering if anyone had been arrested for arson, try
wildfire arrested and if that doesn’t work, wildfire arrested arson. (Why
not search for arson to begin with? Because it’s not certain that a weblog
commentator would use the word “arson.” Instead, he might just refer to
someone being arrested for setting the fire. “Arrested” in this case is a more
certain word than “arson.”)

1 The Google Toolbar
If you use Internet Explorer, Google's got a toolbar for you.

Unlike many search engines, Google never became a “portal”; that is, it did
not try to provide all information to all people as well as put ads on every
square inch of its web site.

Because of that, it was never important that Google get people to its front
page; all its ads are on its pages of search results. So it made sense that Goo-
gle was able to offer the Google Toolbar™.

The Google Toolbar is an add-on, currently only available for Internet
Explorer, that offers all the functionality of the Google site without having
the visit the site itself. In fact, the Google Toolbar offers more functionality;
it’s the only way you can see exactly what a site’s PageRank™ is,

is. The higher the PageRank, the higher it’'ll appear in Goo-
gle search results.

\ PageRank is Google’s assessment of just how popular a page
You can download the Google Toolbar for free at hitp://toolbar.google.com/.
You will need Internet Explorer with ActiveX functions enabled to download
and install the toolbar.

Once installed, the Google Toolbar actively keeps track of what you’re view-
ing and asks Google (by passing on the URL) for anything it knows about the
page, including PageRank and categorization. Some people might be con-
cerned that Google could misuse the information being sent, so Google offers

Searching Google | 61

| The Google Toolbar

the option of installing the toolbar without the PageRank features, which
protects your privacy. If you don’t know which you want to do, go ahead and
choose the complete download. You can always disable the PageRank and
Category tools later using the toolbar options. The installed toolbar is shown
in Figure 1-17.

O’REILLY

Hot off the Press News & Articles
[Bewtwellors | Mew & Upouming Tides] WEBLOG

Emerging Techmbegy Confbrnnce: Call for
Jakarts Suwls - Aspopule ss Participation - OReily & Assceistes invies Tiom 0 Ry Yow Aus A
the Sinsa frampwork for buddng W'eb techacingists, CTOs, CI0s, peogrammers, business el
and J3Ps i davalopars, strategats, and poboymakers to lead. W
the oribne doramentation is inedsquete. This tutorial and conference sesmons st neg year's [doe Mablogs..]
‘book takes & reelwonld, "this is how to do it* OReilly Emerging Technelogy Conference.

epproack to developieg tomples emerpries - ".?'
- | applicatsns usseug Siruts The forus on the | 1 . ETVWORK.
wersion of i framework makes this the most up- p(lmwnfEmChwll @m

to-dats ook svadable on the subject, covenng topics sach &s cavesing Secusity, fiom OFeiZy's

instellation and configuration, J3P and Jakerta Tag Litranss, and upeeeing Apach: The Definitive Intalling Oracle #.en Mac
imtemabicnakyshion end locsinatien code. Sumple Cleginr 14, Geuidde, Frd Fligian OF XK. Part

Uing Tilles, 16 available orir Ol aclieoeC oatas cam]

Substituting and Commyting Object Tpes ina
EHE Bucket Rufirsnce, 2nd Editian - Surple, 1o the posst, wnd Hierarshy - Staven Fruerstein sxamines Imbsdtating wml Comsring
eompart, the second edition of FHF Focker Refirence has been Fubstitutahility and typs conversion as he siploces 2
thormaghly updated to mchade the specifics of PHP 4, the the advantages snd fexibility of object-type [Railly Batrark]
iom [tis both o to PHF Cirarle 5. Steven s & covaths of]

mmﬂmﬂm memnﬁmnnmumqu Oacle FL/SOL Programming, 3rd Editien, Iomlementing Drog sod Drey

by FHE The in Windwws Farms

[T onst com]

all the care fnctions of FHF alphabetically so you can find what O Relily HTML Guide Is.
you mend easily Coamgrnhensdys - En thos
Builder com boak review, Tony

Baitor o iy

Figure 1-17. The Googie Toolbar

Using the toolbar for web search is simple: enter some text in the query box
and hit enter. You'll see that you’ll get a page of Google results and that
some of the tools on the toolbar will light up. You’ll be able to retrieve infor-
mation about the returned page, move up one directory from the current
page (in this case, it’d move you to the Google home page) and use the high-
light tool to highlight all occurrences of your search term in the document.

The toolbar works just as well when you're surfing using Internet Explorer’s
URL box. The Page Info button will give you the option of seeing a cached
version of the page you're viewing (assuming Google has a cached version in
stock) as well as showing backward links to the page, similar pages, and the
opportunity to translate the page into English if it isn’t already in English.
Generally speaking, the more popular a page is, the more likely it is to have
backward links and similar pages.

But where are all the other offerings, such as the image search, the catalog
search, and the Google Groups search? They're available, but the default
install of the Google Toolbar turns them off. Click on the Google logo on
the left side of the toolbar and choose Toolbar Options.

62 | Searching Google

The Mozilla Google Toolbar -

You'll see that the options page allows you to add several more search but-
tons, including the I'm Feeling Lucky button (that’ll take you directly to
Google’s first search result), the image search button, the Google Groups
search button, and the Google Directory search button. If you feel like
expressing your opinion, you can also activate the voting buttons; when you
visit a page, you can click on the happy face or sad face button to express
your opinion of the page.

If you're feeling adventurous, use the “Experimental Features” link at the
bottom of the screen. This option will let you set up a Combined Search
button. The Combined Search button looks like the Search web button
already on the toolbar, with a small triangle next to it. Click on the triangle
and you’ll get a drop-down menu that lets you search several Google proper-
ties, including images, Usenet, dictionary, stock quotes, and several of the
specialty searches such as Linux, Apple Macintosh, and Microsoft.

If you don’t have Internet Explorer, you can get close with
the Mozilla Toolbar [Hack #25] for the Mozilla browser or a
newer version of Netscape Navigator (Version 7). If you

don’t use Mozilla, IE, or a Mozilla-based browser, try the
browser-independent Quick Search Toolbar [Hack #26].

The Mozilla Google Toolbar

Googlebar for Mozilla-based browsers emulates many of the features of the
official Google Toolbar.

The official Google Toolbar [Hack #24] runs only on Internet Explorer for Win-
dows, making it unavailable to those who use other operating systems or
prefer other browsers such as Mozilla, Netscape, and Opera.

While still in its early stage, a team at Mozdev.org (http://www.mozdev.org/)
has created a third-party toolbar, Googlebar (http://googlebar.mozdev.org/),
that brings much of the functionality of the Google Toolbar to the Mozilla
and Netscape browsers. The only notable missing feature is the PageRank
[Mack #95] indicator.

Make sure you have software installation enabled in your
preferences before installing the Googlebar or this won’t
work.) Go to Preferences = Advanced — Software Installa-
tion, and make sure the box is checked.

The latest Googlebar is available for download from http://googlebar.
mozdev.org/installation.html. Installation is a snap, performed from right
inside Mozilla/Netscape itself. Visit the download URL and choose the

Searching Google | 63

| The Quick Search Toolbar

“Install Version” link. You'll be prompted to install the software, which will
take only a moment. After it’s been installed you’ll need to restart your
browser.

If you've used the “official” Google Toolbar, the first thing you'll notice is
that Googlebar looks almost exactly like it.

The default toolbar gives you the options to search all of Google, search a
single domain, use the I'm Feeling Lucky feature, or search Google Groups
[Hack #30] or the Google Directory [Hack #29]. Filling out the query box and hit-
ting enter will give you search results in the same window; however, filling
out the box and using Ctrl-Enter opens the search result in a new Moxzilla
tab—handy for when you don’t want to abandon your current surfing to do
a search. You’ll also notice when you enter a query term in the box that it
appears on the toolbar as a button; click that button to find the term on the
web page you’re currently viewing,

Besides the major Google searches, you can also invoke several special
searches, including Google Images, Google Catalogs, and Google’s Uncle-
Sam search. There’s a separate button for Google’s computer-related special
searches (including BSD and Linux). You can also get information about a
page you're viewing (including a cached version, if available, similar pages,
links to the page, and an English translation if necessary.)

Right-clicking on the toolbar gives you the option to perform a Google
search on any word or words you may highlight on the current web page. If
you click the Googlebar logo on the left of the bar, you’ll find links to sev-
eral Google properties, including Google Images [Hack #31] and the Google
Directory [Hack #29]. You'll also have a chance here to set up a keyboard short-
cut to take advantage of the Googlebar without your mouse.

At the time of this writing, the Googlebar is in the early stages, but rather
stable, nonetheless. If you use Mozilla or Netscape and spend any time at
Google properties, it’s a must-have.

The Quick Search Toolbar

Why do you have to even launch your browser to search Google? This tool lets
you search Google and over 100 other search engines from your Windows
status bar.

Why should you have to launch a browser to get access to Google’s over 2
billion pages’ worth of information? You don’t. If you want to go about as
far beyond the browser as you can go without actually leaving the com-
puter, check out Dave’s Quick Search Deskbar (http://notesbydave.com/
toolbar/doc.htm), shown in Figure 1-18.

64 | Searching Google

——

This is a quick little download, all of 322K. You'll need to have Windows 95
or better and IE 5.5 or later to use it. Once you've downloaded and installed
it, right-click your mouse on the Windows taskbar at the bottom of your
screen and choose Toolbars + Add Quick Search.

Figure 1-18. Dave’s Quick Search Deskbar

Basic Browser Use

The Quick Search tool is a veritable Swiss Army knife of functions, but we’ll
start with the basics; enter a query in the box and hit the enter key on your
keyboard. Your default browser will pop up the Google result page.

The complicated stuff isn’t that much more complicated. To go directly to
the first hit of a result (using Google’s I'm Feeling Lucky feature) add an
exclamation point to your search:

"washington post"!
Make sure the exclamation point is on the outside of a phrase (i.e., isn’t con-
tained within the quotes) or it won’t work. You can, of course, add the
exclamation point to the end of a multiple word query:

yahoo what's new!

Searching Google | 65

| The Quick Search Toolbar

Triggers and Switches

The Quick Search Deskbar is powered by a few triggers and lots of switches.
The triggers specify which facet of Google is to be searched, and the
switches specify either which facet should be searched or the kind of results
that should be returned. And they can be mixed and matched.

The triggers. Triggers are characters placed before your query, altering the
domains they search and the sorts of queries they construct.

> Constructs a Google Advanced Search [in “Advanced Search”] based on your
entered query information. Remember, though, that Google’s advanced
search page can’t handle overly complex queries. If you try to send a
complicated query the likes of > fiscal responsibility -site:com -
site:org, it won't be accurately represented in the resulting advanced
search page.
> cholesterol drugs +site:edu
?? Searches the Google Directory [Hack #29).
?? "George Bush"

, Searches Google Groups [Hack #30]. You can use the Groups-specific spe-
cial syntaxes with this trigger.

, group:sci.med* dermatology</pre

The switches. Switches are characters added on to the end of your query,
altering the query in various ways.
/ifl
Invokes the equivalent of Google’s I'm Feeling Lucky button, taking you
directly to the highest ranked Google result for your query. A shortcut is
to simply postfix your query with a ! (exclamation point).
yahoo what's new /ifl yahoo what's new!
/advanced
Works like the Advanced Search trigger above.
/groups
Works like the Google Groups trigger above.
/directory
Works like the Google Directory trigger above.
<code>/images
Searches Google Images. You can add the Google Images special syn-
taxes for this search.
intitle:cat /images

66 | Searching Google

The Quick Search Toolbar |

/news
Restrict searches to Google News. You can use the Google News spe-
cial syntaxes with this search.
intitle:"Tony Blair" /news
/since:days
Searches for pages indexed days ago. For example, for web sites about
Jimmy Carter indexed in the last year, you'd use "Jimmy Carter" /
since:365. There are some quick shortcuts for this as well: /since:t
finds things indexed today, /since:y means yesterday, /since:w is the
last seven days, and /since:m (“m” as in month) is the last 30 days.
/cache
Returns the cached version of the URL specified or an error, if the page
is not in Google’s cache.
http://www.oreilly.com /cache

/related
Finds pages Google thinks are most related to the specified URL. If
nothing’s related, however unlikely, you’ll get an error message.
http://www.Tesearchbuzz.com /related
/1ink
Finds pages that link to the specified URL.
http://www.google.com /link
Location switches
Allow you to specify that the results you get are from local (or not local,
if you prefer) versions of Google.
/canada (Canada)
/deutschland (Germany)
/france (France)
/italia (Italy)
/uk (United Kingdom)
/language:xx
Allow you to change the Google web interface to whatever language you
prefer, specified as a language code in place of xx. For a complete list of
available languages, visit the Google Language Tools (http:/www.
google.com/language_tools) page. For example, to query Google in
Malay, you’d add /language:ms to your query.
python /language:ms

Navigating Your Searches

With all these switches, you might imagine that you could do a lot of experi-
menting with Google searches. And you’d be right!

The Search tool has a built-in way to go over all the different searches you’ve
done by clicking in the search box and repeatedly hitting the down arrow on
your keyboard.

And the Rest

I've spent this hack discussing Dave’s Quick Search Taskbar Toolbar Desk-
bar in the context of Google, because that’s what this book is all about. But
the tool does a lot more than Google. Click on the >> next to the text box.
You’ll get a list of search tools in several categories, from Computers to Ref-
erence to Shopping. Once you’re finished seeing how cool this tool is when
used with Google, check it out with over a hundred other different search
interfaces.

See Also
* The Google Toolbar [Hack #24]
* The Mozilla Google Toolbar [Hack #25)

* Huevos (http://ranchero.com/software/huevos/), a standalone search wid-
get for Mac OS X

Ji GAPIS

A standalone Google search application for Windows.

A lot of the hacks in this book have been either browser-based or somehow
integrated into other applications. There haven’t been too many standalone
applications built to take advantage of Google’s search capacity. GAPIS
(Google API Searching in an Application) is a small standalone application
that performs Google searches on its own (and it can also be set to browser
searching).

GAPIS (http://'www.searchenginelab.com/common/products/gapis/) is avail-
able for free download either as an application executable, complete with
uninstaller, or as an plain executable file with no uninstaller. GAPIS runs
only under Windows 95 or later. Because it uses the Google Web API, you’ll
need your own Google API developer’s key to run your queries.

The GAPIS interface is very simple, providing a basic window for searching
and another screen for options.

There’s a field to enter your developer’s key alongside the query box. A pull-
down box allows you to access previous queries. You have two viewing
options: regular mode, which provides information about search results that

68 | Searching Google

you'd usually see from a Google search, and spreadsheet mode, which pro-
vides information in a table format like you’d see in a spreadsheet. Figure 1-19
illustrates the GAPIS interface.

. Google API Search Tool
| ... The following download options are available for Google API Search Tool.

Google™ API Search Tool: User Guide
User Guide [Google API Search Tooll. ... Google License Key. Before you start u...

Figure 1-19. The GAPIS interface

Options

The Options screen allows you to set several search parameters, including
SafeSearch filtering, filtering similar results, and the maximum number of
results returned. (GAPIS will return up to 30 results.) Figure 1-20 shows the
Options page.

Searching

Once you run a search, GAPIS will return the list of results on the main page
in the format you specify (regular or spreadsheet mode, shown in Figure 1-21),

To open an entry in your web browser, double-click on it. To go directly to
a web search in the browser (if you want more than 30 results, for exam-
ple), click on the Search In Browser button.

If you need to create a set of your favorite searches, with more of an eye
toward an overview of the results instead of a deep browsing, GAPIS is a
quick and handy tool.

Options

Figure 1-20. The GAPIS Options page

ftnik Technologies]

W, saafthsnglnelab cum/l:omrnun!produc

 http: //www.llnksplder org/index.cgi/Computers/In,

,gr/wabltahano/g_ulsclu It htrnI

'http /fwww.searchenginelab. com/common/produc. ..
http Jlveww. canduchlcago org]Cornputers/]nteme, o
. http://hpsearch, uni-trier.de/hp/a- tree/a/Araujo:R.

Google™ API Search Tool: Us

Ca'riaaéﬁl'ca'gu org : Compute
| Search Result fnr Regina Bort

Figure 1-21. GAPIS results in spreadsheet mode

70 | Searching Google

|

Googling with Bookmarklets

Googling with Bookmarklets

Create interactive bookmarklets to perform Google functions from the
comfort of your own browser.

You probably know what bookmarks are. But what are bookmarklets?
Bookmarklets are like bookmarks but with an extra bit of JavaScript magic
added. This makes them more interactive then regular bookmarks; they can
perform small functions like opening a window, grabbing highlighted text
from a web page, or submitting a query to a search engine. There are several
bookmarklets that allow you to perform useful Google functions right from
the comfort of your own browser.

If you’re using Internet Explorer for Windows, you're in
gravy: all these bookmarklets will most likely work as adver-
tised. But if you're using a less-appreciated browser (such as
Opera) or operating system (such as Mac OS X), pay atten-
tion to the bookmarklet requirements and instructions; there
may be special magic needed to get a particular bookmark

working, or indeed, you may not be able to use the bookmar-
klet at all.

Before you try any other site, try Google’s Browser Buttons (read: bookmar-
klets). Google Search queries Google for any text you’ve highlighted on the
current web page. Google Scout performs a related: [in “The Special Syntaxes”]
search on the current web page.

Google’s bookmarklets are designed for the Internet Explorer browser.

Google Translate!
(http://www.microcontentnews.com/resources/translator.htm)
Puts Google’s translation [Hack #2] tools into a bookmarklet, enabling
one-button translation of the current web page.

Google Jump

(http://www.angelfire.com/dc/dcbookmarkletlab/Bookmarklets/s cript002.html)
Prompts you for search terms, performs a Google search, and takes you
straight to the top hit thanks to the magic of Google’s I'm Feeling Lucky
[in “Google Basics”] function.

The Dooyoo Bookmarklets

(http://dooyoo-uk.tripod.com/bookmarklets2.html) collection
Features several bookmarklets for use with different search engines—
two for Google. Similar to Google’s Browser Buttons, one finds high-
lighted text and the other finds related pages.

Searching Google | 71

" Googling with Bookmarklets

Joe Maller’s Translation Bookmarkets
(http:/fwww.joemaller.com/translation_bookmarklets.shtml)
Translate the current page into the specified language via Google or
AltaVista.

Bookmarklets for Opera

(http://www.philburns.com/bookmarklets. html)
Includes a Google translation bookmarklet, a Google bookmarklet that
restricts searches to the current domain, and a bookmarklet that
searches Google Groups [Hack #30). As you might imagine, these book-
marklets were created for use with the Opera browser.

Googlelt!

(http://www.code9.com/googleit. html)
Another bookmarklet that searches Google for any text you highlight on
the current web page.

72 | Searching Google

CHAPTER TWO

Google Special Services

and Collections
Hacks #29-35

Google is famous as a web search engine, but it goes far beyond that. For the
last couple of years, Google has been quietly adding components that search
a variety of data collections. Here’s an overview of what’s available.

Each dara collection has its own unique special syntaxes,
discussed in detail in specific hacks for specific collections.

Google’s Current Offerings

Google’s web search (http://www.google.com/) covers over 3 billion pages. In
addition to HTML pages, Google’s web search also indexes PDF, Post-
script, Microsoft Word, Microsoft Excel, Microsoft Powerpoint, and Rich
Text Format (RTF). Google’s web search also offers some syntaxes that find
specific information, like stock quotes and phone numbers, but we’ll save
that for later in the book.

Google Directory [Hack #29]
The Google Directory (http://directory.google.com/) is a searchable sub-
ject index based on The Open Directory Project (http://www.dmoz.org).
As it indexes sites (not pages), it’s much smaller than the web search but
better for general searches. Google has applied its popularity algorithm
to the listings so that more popular sites rise to the top.

Google Groups [Hack #30)
Usenet is a worldwide network of discussion groups. Google Groups
(http://groups.google.com/) has archived Usenet’s discussions back 20
years in some places, providing an archive that offers over 700 million
messages.

Google Images [Hack #31)
Google Images (http://images.google.com/) offers an archive of over 330
million images culled from sites all over the web. Images range from
icon sized to wallpaper sized, with a variety of search engines for hom-
ing in on the closest one.

Google News [Hack #32]
Google News (http://news.google.com/) is still in beta at the time of this
writing. It checks over 4,000 sources for news and updates the database
once an hour. Google News is different from most other search engines
in that it “clusters” headlines on its front page into similar topics.

Google Catalogs [Hack #33]
Searching print mail-order catalogs probably isn’t the first thing that
pops into your mind when you think of Google, but you can do it here.
Google Catalogs (http://catalogs.google.com/) has digitized and made
available catalogs in a dozen different categories. If you don’t see your
favorite catalog here, you can submit it for possible consideration.

Froogle Hack #34]

Google Catalogs is a great way to do offline shopping, especially if you
like to browse with nothing more than a couple of keywords. However,
if you’re the modern type who insists on doing all your shopping online,
you'll want to check out Froogle (http://froogle.google.com/). Froogle, a
combination of the words “Google” and “frugal,” is a searchable shop-
ping index that looks a lot like the Google Directory with a focus on get-
ting you right to an online point of purchase for the item you're
interested in. The service was launched in December 2002 and, at the
time of this writing, is still in beta.

Google Labs [Hack #35]
There’s no telling what you’ll find at Google Labs (http://labs.google.
com/); it’s where Google parks their works-in-progress and lets the gen-
eral public play with ‘em. At the time of this writing, you’ll find a way to
search Google via phone, a glossary search, keyboard navigation, and a
search that allows you to create a set of similar words from a few search
results.

Google Answers

Google’s search engine is all about clever computing, but Google Answers
(http://lanswers.google.com/) is all about smart folks. Independent Google
Answers answer questions for a price set by the person asking the ques-
tions. Sources used are restricted to open web collections, and Google is
building a database of the answers. If the service keeps up, this offering will
be very large and very cool in a year or so.

74 | Google Special Services and Collections

Topic-Specific Search

Google’s Topic-Specific Search (http://www.google.com/advanced_search)
provides some narrowed views of its index along various lines and topics,
including:

* UncleSam (http://www.google.com/unclesam) for U.S. government sites

* Linux (http://www.google.com/linux), BSD Unix (http://www.google.com/
bsd), Apple Macintosh (http://www.google.com/mac), and Microsoft
(http://www.google.com/microsoft.html) computer operating system-spe-
cific collections

* Universities (http://www.google.com/options/universities.html), from
Abilene Christian to York University

Google of the Future—Google Shopping?

Google’s a private company, and as such the public isn’t privy to their finan-
cial status. But it’s been said they’re profitable now, even though they haven’t
delved too deeply into that holy grail of online companies: e-commerce.

Considering Google’s unique way of doing things, it should come as no sur-
prise that their way of getting into shopping online was just as contrary as
their other many innovations. Instead of building a mall or online catalogs
as many other search engines have attempted, Google took their search tech-
nology and used it to make a excellent search engine of products from
offline, paper catalogs. And in some ways, it’s much more effective than
online catalogs. It’s easier to read the paper catalogs, something you’re used
to doing if you have a physical mailbox. And if you’re on a broadband con-
nection, you can flip through them quickly. Google gathered enough of
them together that you can find a wide range of products easily.

Though Google offers many specialty searches, I'm focusing on this one to
make a point: Google seems to take a sideways approach to search innova-
tion (and that’s not meant as pejorative). They might decide to join in when
other search engines are offering certain features, but always with their own
particular twist on the offering. Seeing how they handled the idea of online
shopping with the Google Catalogs collection might give you a glimpse into
Google’s future.

Google in the 2010s

Speaking of the future, you've already gotten a peek at the sorts of things
they’re exploring in Google Labs. Google Labs is a playground for Google
engineers to experiment with new ideas and new technology. It was also one
of the most difficult things to write up in the book, because it’s likely that
it’ll change between now and the time you hold this book in your hands.

Google Special Services and Collections | 75

- —

But pay attention to what’s there. Check out the voice search and see how
large a list you can generate with the Google Sets. These ideas might be inte-
grated into search syntaxes or specialty searches later on, and if you can
come up with some interesting ways of using them now, you’re that much
ahead of the search engine game.

Google’s already got plenty of search collection offerings, and they’re not
going to get anything but more extensive! In the meantime, browse through
this section for an introduction to what Google has now.

ﬁ Google Directory

Google has a searchable subject index in addition to its 2 billion page web
search.

Google’s web search indexes over 2 billion pages, which means that it isn’t
suitable for all searches. When you've got a search that you can’t narrow
down, like if you're looking for information on a person about whom you
know nothing, 2 billion pages will get very frustrating very quickly.

But you don’t have to limit your searches to the web search. Google also has
a searchable subject index, the Google Directory, at http://directory.google.
com. Instead of indexing the entirety of billions of pages, the directory
describes sites instead, indexing about 1.5 million URLs. This makes it a
much better search for general topics.

Does Google spend time building a searchable subject index in addition to a
full-text index? No. Google bases its directory on the Open Directory Project
data at http://dmoz.org/. The collection of URLs at the Open Directory
Project is gathered and maintained by a group of volunteers, but Google
does add some of its own Googlish magic to it.

As you can see, the front of the site is organized into several topics. To find
what you’re looking for, you can either do a keyword search, or “drill
down” through the hierarchies of subjects.

Beside most of the listings, you’'ll see a green bar. The green bar is an
approximate indicator of the site’s PageRank in the Google search engine.
(Not every listing in the Google Directory has a corresponding PageRank in
the Google web index.) Web sites are listed in the default order of Google
PageRank, but you also have the option to list them in alphabetical order.

One thing you’ll notice about the Google Directory is how the annotations
and other information varies between the categories. That’s because the
information in the directory is maintained by a small army of volunteers
(about 20,000) who are each responsible for one or more categories. For the
most part, annotation is pretty good. Figure 2-1 shows the Google Directory.

76 | Google Special Services and Collections

Google Directory

J « Dimctory Help |
~ Google Search I

The web organized by topic into categories.

Arts Home Regional
Business Kids and Teens Science
News

Figure 2-1. The Google Directory

Searching the Google Directory

The Google Directory does not have the various complicated special syn-
taxes for searching that the web search does. That’s because this is a far
smaller collection of URLSs, ideal for more general searching. However, there
are a couple of special syntaxes you should know about.

intitle:
Just like the Google web special syntax, intitle: restricts the query
word search to the title of a page.

inurl:
Restricts the query word search to the URL of a page.

When you’re searching on Google’s web index, your overwhelming concern
is probably how to get your list of search results to something manageable.
With that in mind, you might start by coming up with the narrowest search
possible.

That’s a reasonable strategy for the web index, but because you have a nar-
rower pool of sites in the Google Directory, you want to start more general
with your Google Directory search.

Google Special Services and Collections | 77

Google Groups

For example, say you were looking for information on author P. G. Wode-
house. A simple search on P. G. Wodehouse in Google’s web index will get
you over 25,000 results, possibly compelling you to immediately narrow
down your search. But doing the same search in the Google Directory returns
only 96 results.You might consider that a manageable number of results, or
you might want to carefully start narrowing down your result further.

The Directory is also good for searching for events. A Google web search for
"Korean War" will find you literally hundreds of thousands of results, while
searching the Google Directory will find you just over 1,200. This is a case
where you will probably need to narrow down your search. Use general
words indicating what kind of information you want—timeline, for exam-
ple, or archives, or lesson plans. Don’t narrow down your search with
names or locations—that’s not the best way to use the Google Directory.

The Google Directory and the Google API
Unfortunately the Google Directory is not covered by the Google API.

E Google Groups

You can search Usenet newsgroups, both recent and from times past,
through Google Groups.

Usenet Groups, text-based discussion groups covering literally hundreds of
thousands of topics, have been around since long before the World Wide
Web. And now they’re available for search and perusal as Google Groups
(http://groups.google.com/). Its search interface is rather different from the
Google web search, as all messages are divided into groups, and the groups
themselves are divided into topics called hierarchies.

The Google Groups archive begins in 1981 and covers up to the present day.
Over 200 million messages are archived. As you might imagine, that’s a
pretty big archive, covering literally decades of discussion. Stuck in an
ancient computer game? Need help with that sewing machine you bought in
1982? You might be able to find the answers here.

Google Groups also allows you to participate in Usenet discussions, handy
because not all ISPs provide access to Usenet these days (and even those that
do tend to limit the number of newsgroups they carry). See the Google Groups
posting FAQ (http://groups.google.com/googlegroups/posting_faq.html) for
instructions on how to post to a newsgroup. You'll have to start with locating
the group to which you want to post, and that means using the hierarchy.

78 | Google Spééial Services and Collections

Google Groups

Ten Seconds of Hierarchy Funk

There are regional and smaller hiearchies, but the main ones are: alt, biz,
comp, humanities, misc, news, rec, sci, soc, and talk. Most web groups are
created through a voting process and are put under the hiearchy that’s most
applicable to the topic.

Browsing Groups

From the main Google Groups page, you can browse through the list of
groups by picking a hiearchy from the front page. You’ll see that there are
subtopics, sub-subtopics, sub-sub-subtopics, and—well, you get the pic-
ture. For example, in the comp (computers) hierarchy you’ll find the sub-
topic comp.sys, or computer systems. Beneath that lie 75 groups and
subtopics, including comp.sys.mac, a branch of the hierarchy devoted to the
Macintosh computer system. There are 24 Mac subtopics, one of which is
comp.sys.mac.hardware, which has, in turn, three groups beneath it. Once
you’ve drilled down to the most specific group applicable to your interests,
Google Groups presents the postings themselves, sorted in reverse chrono-
logical order.

This strategy works fine when you want to read a slow (of very little traffic)
or moderated group, but when you want to read a busy, free-for-all group,
you may wish to use the Google Groups search engine. The search on the
main page works very much like the regular Google search; your only clue
that things are different is the Google Groups tab and each result has an
associated group and posting date.

The Advanced Groups Search (http://groups.google.com/advanced_group_
search), however, looks much different. You can restrict your searches to a
certain newsgroup or newsgroup topic. For example, you can restrict your
search as broadly as the entire comp hiearchy (comp* would do it) or as nar-
rowly as a single group like comp.robotics.misc. You may restrict messages to
subject and author, or restrict messages by message ID.

Of course, any options on the Advanced Groups Search page
can be expressed via a little URL hacking [Hack #g].

Possibly the biggest difference between Google Groups and Google web
search is the date searching. With Google web search, date searching is
notoriously inexact, date referring to when a page was added to the index
rather than the date the page was created. Each Google Groups message is
stamped with the day it was actually posted to the newsgroup. Thus the

Google Special Services and Collections | 79

Google Groups

date searches on Google Groups are accurate and indicative of when con-
tent was produced. And, thankfully, they use the more familiar Gregorian
dates rather than the Google web search’s Julian dates [Hack #11].

Google Groups and Special Syntaxes

You can do some precise searching from the Google Groups advanced
search page. And, just as with Google web, you have some special syntaxes
[in “The Special Syntaxes” in Chapter 1] at your disposal.

- Google Groups is an archive of conversations. Thus, when
you're searching, you'll be more successful if you try looking
for conversational and informal language, not the carefully

structured language you’ll find on Internet sites—well, some
Internert sites, anyway.

intitle:
Searches posting titles for query words.
intitle:rocketry
group:
Restricts your search to a certain group or set of groups (topic). The
wildcard * (asterisk) modifies a group: syntax to include everything
beneath the specified group or topic. rec.humor* or rec.humor.* (effec-
tively the same) will find results in the group rec.humor, as well as rec.
humor.funny, rec.humor.jewish, and so forth.
group:rec.humor*
group:alt*
group:comp.lang.perl.misc
author:
Specifies the author of a newsgroup post. This can be a full or partial
name, even an email address.
author:fred

author:fred flintstone
author:flintstone@bedrock.gov

Mixing syntaxes in Google Groups. Google Groups is much more friendly to
syntax mixing [Hack #8] than Google web search. You can mix any syntaxes
together in a Google Groups search, as exemplified by the following typical
searches:

intitle:literature group:humanities* author:john
intitle:hardware group:comp.sys.ibm* pda

80 | Google Special Services and Collections

-

Some common search scenarios. There are several ways you can “mine”
Google Groups for research information. Remember, though, to view any
information you get here with a certain amount of skepticism—all Usenet
is is hundreds of thousands of people tossing around links; in that respect,
it’s just like the Web.

Tech support. Ever used Windows and discovered that there’s some pro-
gram running you've never heard of? Uncomfortable, isn’t it? If you're won-
dering if HIDSERV is something nefarious, Google Groups can tell you. Just
search Google Groups for HIDSERV. You'll find that plenty of people had
the same question before you did, and it’s been answered.

I find that Google Groups is sometimes more useful than manufacturers’
web sites. For example, I was trying to install a set of flight devices for a
friend—a joystick, throttle, and rudder pedals. The web site for the manu-
facturer couldn’t help me figure out why they weren’t working. I described
the problem as best I could in a Google Groups search—using the name of
the parts and the manufacturer’s brand name—and it wasn’t easy, but 1 was
able to find an answer.

Sometimes your problem isn’t as serious but it’s just as annoying; you might
be stuck in a computer game. If the game has been out for more than a few
months your answer is probably in Google Groups. If you want the answer
to an entire game, try the magic word “walkthrough.” So if you’re looking
for a walkthrough for Quake II, try the search "quake ii" walkthrough. (You
don’t need to restrict your search to newsgroups; walkthrough is a word
strongly associated with gamers.)

Finding commentary immediately after an event. With Google Groups, date
searching is very precise (unlike date searching Google’s web index). So it’s
an excellent way to get commentary during or immediately after events.

Barbra Streisand and James Brolin were married on July 1, 1998. Searching
for "Barbra Streisand" "James Brolin" between June 30, 1998 and July 3,
1998 leads to over 40 results, including reprinted wire articles, links to news
stories, and commentary from fans. Searching for "barbra streisand"
"james brolin" without a date specification finds more than 1,300 results.

Usenet is also much older than the Web and is ideal for finding information
about an event that occured before the Web. Coca-Cola released “New
Coke” in April 1985. You can find information about the release on the Web,
of course, but finding contemporary commentary would be more difficult.
After some playing around with the dates (just because it’s been released
doesn’t mean it’s in every store) I found plenty of commentary about “New
Coke” in Google Groups by searching for the phrase “new coke” during the

Google Special Services and Collections | 81

Google Images

month of May 1985. Information included poll results, taste tests, and specu-
lation on the new formula. Searching later in the summer yields information
on Coke re-releasing old Coke under the name “Classic Coke.”

Google Groups and the Google API

At the time of this writing, Google Groups is not supported by the Google
API If you want to save your searches in a comma-delimited file, however,
you can use the Google Groups scraper [Hack #46].

g e Google Images
#31 Find a picture of your childhood friend or the national flag of Zimbabwe

amongst the over 390 million indexed Google Images.

Take a break from text-crawling and check out Google Images (http://
images.google.com/), an index of over 390 million images available on the
Web. While sorely lacking in special syntaxes [in “The Special Syntaxes” in Chapter 1],
the Advanced Image Search (http://images.google.com/advanced_image_
search) does offer some interesting options.

Of course, any options on the Advanced Image Search page
can be expressed via a little URL hacking [Hack #9].

Google’s image search starts with a plain keyword search. Images are indexed
under a variety of keywords, some broader than others; be as specific as pos-
sible. If you’re searching for cats, don’t use cat as a keyword unless you don’t
mind getting results that include “cat scan.” Use words that are more
uniquely cat-related, like feline or kitten. Narrow down your query as
much as possible, using as few words as possible. A query like feline fang,
which would get you over 3,000 results on Google, will get you no results on
Google Image Search; in this case, cat fang works better. (Building queries
for image searching takes a lot of patience and experimentation.)

Search results include a thumbnail, name, size (both pixels and kilobytes),
and the URL where the picture is to be found. Clicking the picture will
present a framed page, Google’s thumbnail of the image at the top, and the
page where the image originally appeared at the bottom. Figure 2-2 shows a
Google Images page.

Searching Google Images can be a real crapshoot, because it’s difficult to
build multiple-word queries, and single-word queries lead to thousands of

82 | Google Special Services and Collections

S
Actual size. See 3
This image may be subject to copyright.

Figure 2-2. A Google Images page

results. You do have more options to narrow your search both through the
Advanced Image Search interface and through the Google Image Search spe-
cial syntaxes.

Google Images Advanced Search Interface

The Google Advanced Image Search (http://images.google.com/advanced_
image_search) allows you to specify the size (expressed in pixels, not kilo-
bytes) of the returned image. You can also specify the kind of pictures you
want to find (Google Images indexes only JPEG and GIF files), image color
(black and white, grayscale, or full color), and any domain to which you
wish to restrict your search.

Google Image search also uses three levels of filtering: none, moderate, and
strict. Moderate filters only explicit images, while strict filters both images
and text. While automatic filtering doesn’t guarantee that you won’t find
any offensive content, it will help. However, sometimes filtering works
against you. If you're searching for images related to breast cancer, Google’s
strict filtering will cut down greatly on your potential number of results. Any
time you're using a word that might be considered offensive—even in an
innocent context—you’ll have to consider turning off the filters or risk miss-
ing relevant results. One way to get around the filterings is to try alternate

Google Special Services and Collections | 83

-

words. If you’re searching for breast cancer images, try searching for mam-
mograms or Tamoxifen, a drug used to treat breast cancer.

Google Images Special Syntaxes
Google Images offers a few special syntaxes:

intitle:
Finds keywords in the page title. This is an excellent way to narrow
down search results.

filetype:
Finds pictures of a particular type. This only works for JPEG and GIF,
not BMP, PNG, or any number of other formats Google doesn’t index.
Note that searching for filetype: jpg and filetype:jpeg will get you dif-
ferent results, because the filtering is based on file extension, not some
deeper understanding of the file type.

inurl:
As with any regular Google search, finds the search term in the URL.
The results for this one can be confusing. For example, you may search
for inurl:cat and get the following URL as part of the search result:

www.example.com/something/somethingelse/something.html

Hey, where’s the cat? Because Google indexes the graphic name as part
of the URL, it’s probably there. If the page above includes a graphic
named cat.jpg, that’s what Google is finding when you search for inurl:
cat. It’s finding the cat in the name of the picture, not in the URL itself.

site:
As with any other Google web search, restricts your results to a speci-
fied host or domain. Don’t use this to restrict results to a certain host
unless you’re really sure what's there. Instead, use it to restrict results to
certain domains. For example, search for football.site:uk and then
search for football.

site:com is a good example of how dramatic a difference using site:
can make.

Google Images and the Google API

At the time of this writing, Google Images is not included in the Google API.

g Google News

Reading the latest news across myriad sources using Google News.

We've all been a little spoiled by Google. It seems like whenever they release
something, we expect it to be super cool immediately.

84 | Google Special Services and Collections

Google News

Alas, Google News is cool, but it isn’t the greatest news tool in my opinion.
It’s barely in my top three for getting news off the Internet. To be fair to
Google, though, News Search is, at this writing, still in beta.

The search form functions like Google web search—all searches are default
AND. Search results group like news stories into clusters, providing title,
source, date, and a brief summary (the link to the full story is included in the
title). The only option beyond that searchers have is to sort their searches by
relevance or date; there is no advanced search. The sort option appears on
the right of the results page as you search.

Special Syntaxes
Google’s News Search supports two special syntaxes.

intitle:
Finds words in an article headline.
intitle:miners
site:
Finds articles from a particular source. Unfortunately, Google News
does not offer a list of its over 4,000 sources so you have to guess a little
when you’re looking around.
miners site:bbc.co.uk

Making the Most of Google News

The best thing about Google News is its clustering capabilities. On an ordi-
nary news search engine, a breaking news story can overwhelm search
results. For example, in late July 2002, a story broke that hormone replace-
ment therapy might increase the risk of cancer. Suddenly using a news search
engine to find the phrase “breast cancer” was an exercise in futility, because
dozens of stories around the same topic were clogging the results page.

That doesn’t happen when you search the Google news engine, because
Google groups like stories by topic. You'd find a large cluster of stories
about hormone replacement therapy, but they’d be in one place, leaving you
to find other news about breast cancer.

Does this always work perfectly? In my experience, no. Some searches clus-
ter easily; they’re specialized or tend to spawn limited topics. But other que-
ries—like "George Bush"—spawn lots of results and several different clusters.
If you need to search for a famous name or a general topic (like crime, for
example) narrow your search results in one of the following ways:

* Add a topic modifier that will significantly narrow your search results,
as in: "George Bush" environment, crime arson.

Google Special Services and Collections | 85

Google News

* Limit your search with one of the special syntaxes, for example:
intitle:"George Bush".

* Limit your search to a particular site. Be warned that, while this works
well for a major breaking news story, you might miss local stories. If
you're searching for a major American story, CNN is a good choice
(site:cnn.com). If the story you're researching is more international in
origin, the BBC works well (site:bbc.co.uk).

If your searches are narrow or relatively obscure, the clustering issue may
never come up for you. In that case, you won’t get to take advantage of Goo-
gle’s greatest strength and will instead notice its weaknesses: inability to
search by date, inability to sort by source, limitations on searching by lan-
guage or source, etc. In that case, you might want to try an alternative.

Beyond Google for News Search

After a long dry spell, news search engines have popped up all over the
Internet. Here are my top four:

FAST News Search (http://www.alltheweb.com/?cat=news)
Great for both local and international sources. Advanced search lets you
narrow your search by language, news source category (business, sports,
etc.), and date the material was indexed. Drawback: little press release
indexing.

Rocketinfo (http://www.rocketnews.com/)
Does not use the most extensive sources in the world, but lesser known
press release outlets (like PETA) and very technical outlets (OncoLink,
BioSpace, Insurance News Net) are to be found here. Rocketinfo’s main
drawback is its limited search and sort options.

Yahoo! Daily News (http://dailynews.yahoo.com)
Sports its source list right on the advanced search page. A 30 day index
means sometimes you can find things that have slipped off the other
engines. Provides free news alerts for registered Yahoo! users. One
drawback is that Yahoo! Daily News has few technical sources, which
means sometimes stories appear over and over in search results.

Northern Light News Search (http://www.northernlight.com/news.html)
Has absolutely the best press release coverage I've found and a good
selection of international news wires. News search results are organized
into topical folders. Free alerts are available. Drawbacks are: only two
weeks’ worth of sources, and the source list is not particularly large.

Google News and the Google API
The Google API, at this writing, does not support Google News.

86 | Google Special Services and Collections

33

Google Catalogs

Google Catalogs

Comb through your favorite catalogs or peruse a collection of over 4,500 with
Google Catalogs.

At the start of the dotcom boom, all the retailers rushed to put their cata-
logs online. Google’s sauntered along, and long after all the hoopla has died
down, put up catalogs in a different way. Instead of designing a web site that
looks like a catalog, Google simply scanned in pages from catalogs—over
4,500 of them—and made them available via a search engine.

From the front page of Google Catalogs (http://catalogs.google.com), you
may either do a simple keyword search or browse through a subject index of
catalogs. Each catalog listing gives you the option to view the catalog, view
previous editions, or link to the catalog’s site (if available). If you choose to
browse the catalog, you'll be presented with a series of page thumbnails.
Catalog pages also offer a search bar at the right of the page that allows you
to search just that catalog.

If you’re interested in a particular class of item (like electronics or toys or
whatever) stick with the topical catalog browsing. If you're searching for a
particular item, use the keyword search on the front page. If your search is
somewhere in between, use the advanced search page.

The Advanced Catalog Search (http://catalogs.google.com/advanced_catalog_
search) lets you narrow down your search by categories (from Apparel and
Accessories to Toys and Games), specify if you want to search only current
catalogs or all past and current catalogs, and specify if you'd prefer to filter
results using SafeSearch.

Of course, any options on the Advanced Catalog Search page
can be expressed via a little URL hacking [Hack #9].

Search results are very different from other Google properties. They include
the catalog name and issue date, a picture of the catalog’s front page, the
first page where your search term appears (a link to additional results with
your search term, if any, appears on the line with the name and date of the
catalog), and a close-up of where your search term appears on the page.
Generally, the pages in the search results aren’t very readable, but that var-
ies depending on the catalog. Click on the page to get a larger version of the
entire page.

Special Syntaxes

Google Catalogs search does not have any special syntaxes.

Google Special Services and Collections | 87

Froogle

Google Catalogs and the Google API

Google’s Catalog search is not, at the time of this writing, supported in the
Google AP

H Froogle
Shop ‘il you drop with Froogle, Google's online shopping index.

Google Catalogs is a great way to do offline shopping, especially if you like
to browse with nothing more than a couple of keywords. However, if you're
the modern type who insists on doing all shopping online, you’ll want to
check out Froogle (http://froogle.google.com/). Froogle, a combination of the
words “Google” and “frugal,” is a searchable shopping index that looks a
lot like the Google Directory with a focus on getting you right to an online
point of purchase for the item you’re interested in. The service was launched
in December 2002 and, at the time of this writing, is still in beta.

There are two ways of finding items in this directory: browsing and search-
ing. In the same way as browsing and searching, Google can lead to differ-
ent results, so too will you find different products depending on the road
you take in Froogle.

Browsing for Purchases

The Froogle home page lists a set of top-level categories, each with a repre-
sentative smattering of subcategories. To browse a particular category, just
click on the link. You'll find that even after some drilling down to just the
subcategory you’re after, there are still bound to be a lot of items. For exam-
ple, there are over 2,500 results on the flower arrangement category.

Listings include a picture when available (as is most often the case), price, the
store selling the item, a brief description of the item, and a link leading to all
items from that particular vendor in the category at hand. You can narrow
things down by choosing to view only items within a particular price range.

Unless you have a lot of time and really like shopping, the browsing option
is less than optimal. Searching Froogle works much better, especially when
you’re in a hurry and have something specific in mind.

Searching for Purchases

Froogle sports a basic keyword search, but to get the most out of your
search, you’ll probably want the Advanced Froogle Search (http://froogle.
google.com/froogle_advanced_search).

88 | Google Special Services and Collections

e

Some of the Advanced Search will look familiar if you've used the standard
Google Advanced Search; you can specify words, phrases, and words that
should be excluded. But you can also specify products that are below a spec-
ified price or within a particular price range. You can also specify if your
keywords should appear within the product name, the product description,
or both; this gives you some nice additional fine-grained control. Finally,
you can specify the category in which your results should appear—from
Apparel & Accessories to Toys & Games.

Personally, I don’t like advanced search forms very much, so I prefer using
special syntaxes when I can, and Froogle does have some special syntaxes
up its sleeve. intitle: restricts results to the title of the item, while intext:
restricts results to the description. You can use these in combination, so
intitle:giraffe intext:figurine will work as expected. There’s also an OR,
specified by a | (the pipe character); for example, to find a glass giraffe or
elephant, you'd search for: glass (intitle:giraffe | intitle:elephant).

Adding a Merchant to Froogle

With Google’s prominence in the regular search space, it’s reasonable to
expect that Froogle will quickly become a popular shopping destination. If
you sell things online, you might be wondering how much Google charges a
vendor to be a part of the Froogle stable.

The short answer is: nothing! Yup, you can be listed in Froogle without pay-
ing a dime. There are some limitations, though. Currently, Froogle only
accepts English-language web sites and products priced in U.S. dollars.

Merchants who wish to be included on the site are invited to submit a data
feed-read: a tab-delimited file generated by your favorite spreadsheet pro-
gram, in-house content-management system, product database, or the like.
For more information on making your products available via Froogle, see
http://froogle.google.com/froogle/merchants.html.

Froogle and the Google API

At the time of this writing, Froogle does not support the Google API.

E Google Labs
#35 Google Labs, as the name suggests, sports Google's experiments, fun little
hacks, and inspirational uses of the Google engine and database.

Be sure not to miss Google Labs (http://labs.google.com/). The whole point
of this part of Google’s site is that things will appear, vanish, change, and

Google Special Services and Collections | 89

Google Labs

basically do whatever they want. So it may be different by the time you read
this, but it’s still worth covering what’s here now; you might find one of the
tools here useful in sparking ideas.

At the time of this writing, there are four experiments running at the lab:

Google Glossary (http://labs1.google.com/glossary)
A search engine for acronyms and abbreviations. It found TMTOWDI
and Ventriculoperitoneal Shunt, but missed on MST3K and google-
whack. Entries include a brief definition, a link to an informative page,
definition links to Dictionary.com and Merriam-Webster, and related
phrases if any.

Google Sets (http://labs1.google.com/sets)

Enter a few terms, and Google will try to come up with an appropriate
set of phrases. For example, enter Amazon and Borders, and Google will
come up with Borders, Amazon, Barnes Noble, Buy Com, Media Play,
Suncoast, Samgoody, etc. It doesn’t always work like you’d expect.
Enter vegan and vegetarian and you’ll get veal, Valentine’s Day, Tasma-
nia—it goes a bit far afield. Clicking any item in the group list will
launch a regular Google search.

Google Voice Search (http://labs1.google.com/gvs.html)
Dial the number on the page, and you’ll be prompted to say a search.
Speak your search and then click on the specified link. Every time you
say a new search, the result page will refresh with your new query. You
must have JavaScript enabled for this to work.

Unfortunately, Google Voice Search doesn’t always understand your
requests. When I gave it a whirl, it got Eliot Ness right, and George
Bush without problem, but Fred became Friend and Ethel Merman
became Apple Mountain. It also goes rather quickly. When you use
Google Voice Search, don’t let the computer voice rush you.

Google Keyboard Shortcuts (http://labs1.google.com/keys/)
If you're using an “alternative” browser like Opera, this might not work.
Try it in Mozilla, IE, or Netscape. Google Keyboard Shortcuts is a way
to move around search results using only the keyboard. Instead of a cur-
sor, you follow a little cluster of balls on the right side of the screen.

From there you navigate via your keyboard. The I and K keys move up
and down, while the J and L keys move left and right.

Google WebQuotes (http://labs.google.com/cgi-bin/webquotes/)
Many times you can learn the most about a web page by what other
web pages say about it. Google WebQuotes takes advantage of this fact
by providing a preview of what other sites are saying about a particular
link before you actually meander over to the site itself.

90 | Google Special Services and Collections

Google Labs &

From the Google WebQuotes home page, specify how many Web-
Quotes you ’d like for a particular search (the default is three, a number
I find works well) and enter a search term. Google WebQuotes shows
you the top 10 sites (or, if you suffix the resultant URL with &num=100,
the top 100 sites) with as many WebQuotes for each page as you speci-
fied. Note, however, that not every page has a WebQuote.

This comes in rather handy when you’re doing some general research
and want to know immediately whether the search result is relevant.
When you'’re searching for famous people, you can get some useful
information on them this way, too—and all without leaving the search
results page!

Google Viewer (http://labs.google.com/gviewer.html)

Google Viewer presents Google search results as a slide show. You’'ll
have to use one of the more recent browsers to get it to work; Google
recommends Internet Explorer 5 and above or Netscape 6 and above for
Mac and PC users, Mozilla for those running a variant of Unix.

To fire up Google Viewer, perform a Google search as you usually
would, only from the Google Viewer home page (http://labs.google.com/
gviewer.html) rather than the main Google home page. The results page
looks just like the regular Google results page you know and love.
Notice, however, the toolbar across the top of the page. Use the toolbar
buttons to go forward, backward, or to the first result, alter the speed of
the presentation, or run another search. The slide show itself should
start automatically; if it doesn’t, click the green triangular play button
on the toolbar.

Google will present the first search result along with a live image of the
page itself. About five seconds later, the second result will scroll into
place, and the third, and so on. If you need a break, stop the slide show
by clicking the red square stop button and resume by clicking the green
triangular play button.

Unfortunately, there’s no scrollbar on the web page, so you’ll have to
click the image of the displayed page itself and drag your mouse around
to move within it.

Unless you hit a really good (or a really limited-result) query, this Goo-
gle Labs experiment is of limited use. But if Google ever applies the
Google Viewer to Google News, look out!

Google Labs and the Google API

At this writing, none of the Google Labs tools have been integrated into the
Google APL

Google Special Services and Collections | 91

CHAPTER THREE

Third-Party Google Services

Hacks #36—-40

Here’s a nice Zen question for you: is Google a search engine or a technology?

Weird question, huh? Isn’t Google just a search engine? Doesn’t it provide
the ability to search several different data collections? Or is it more? Isn’t it a
technology that other people can apply to their own search purposes?

Thanks to the Google API and good old-fashioned ingenuity, it’s easy for
third-party developers to take Google’s technology and develop them into
applications that have nothing to do with Google outside of the application
of their technology.

0f Google, but Not Google

In this section, you'll see several examples of third-party services that inte-
grate Google’s technology, but—with the exception of codevelopment
projects that are announced on Google’s site—aren’t sanctioned or created
by Google. Google probably can’t monitor directly the thousands of people
who are using their API. Further, unless a program is violating Google’s
terms of services or the terms of service of the API, Google will probably not
take action about an application. So if you see a application that doesn’t
work as advertised or doesn’t work at all, discuss the issue with the devel-
oper instead of bringing it up with Google. If the application violates the
Google or Google API terms of service, alert Google.

Tinkering with the Ul

Developing third-party services—interfaces or programs that integrate Goo-
gle’s search technology—doesn’t have to mean big API projects. One of the
hacks in this section is a simplifier that takes Google Group URLs and
makes them easier to handle. That’s not the most complicated application in
the world, but it sure makes Google Groups URLSs easier to handle if you're
a researcher or an archivist.

XooMLe: The Google API in Plain Old XML

Of course, you can go even further with the Google API, building services
that access Google’s search results from within other applications.

Expanding the Options with the Google API

When you have the Google API, you can go way outside a traditional search
interface. One of the hacks in this section looks at a Google search you can
check by email. Another one shows you how you can integrate Google
searching into Flash applications. With the Google AP, it’s amazing where
Google search can go!

Thinking Way Outside the Box

Of course, there are plenty of other people who are developing Google ser-
vices on a much larger scale. From the basics of getting to Google via a Log-
itech keyboard (http://www.google.com/press/pressrel/logitech.html) to the
wow-worthy teaming up with BMW for voice-activated searching in Internet-
ready cars (http://www.google.com/press/highlights.html), who knows what
else Google will come up with in the years to come?

XooMLe: The Google API in Plain Old XML
436 ;

Getting Google results in XML using the XooMLe wrapper.

When Google released their Web APIs in April 2002, everyone agreed that it
was fantastic, but some thought it could have been better. Google’s API was
to be driven by Simple Object Access Protocol (SOAP), which wasn’t exactly
what everyone was hoping for.

What’s wrong with SOAP? Google made the biggest, best search engine in
the world available as a true web service, so it must be a good thing, right?
Sure, but a lot of people argued that by using SOAP, they had made it
unnecessarily difficult to access Google’s service. They argued that using
simple HTTP-based technologies would have provided everything they
needed, while also making it a much simpler service to use.

The irony of this was not lost on everyone—Google, being so well-known
and widely used, in part because of its simplicity, was now being slammed
for making their service difficult to access for developers.

The argument was out there: SOAP was bad, Google needed a REST! Repre-
sentational State Transfer (REST) is a model for web services that makes use
of existing protocols and technologies, such as HTTP GET requests, URIs,
and XML to provide a transaction-based approach to web services. The
argument was that REST provided a much simpler means of achieving the
same results, given Google’s limited array of functionality.

Third-Party Google Services | 93

XooMLe: The Google API in Plain Old XML

REST proponents claimed that Google should have made their API avail-
able through the simpler approach of requesting a defined URI, including
query string—based parameters such as the search term and the output
encoding. The response would then be a simple XML document that
included results or an error of some sort.

After playing with the Google API, I had enough exposure to at least know
my way around the WSDL and other bits and pieces involved in working
with Google. I read a lot of the suggestions and proposals for how Google
“should have done it” and set about actually doing it. The result was
XooMLe (http://www.dentedreality.com.au/xoomlel/).

The first step was to create a solid architecture for accessing the Google API.
I was working with the popular and very powerful scripting language, PHP,
so this was made very simple by grabbing a copy of Dietrich Ayala’s SOAP
access class called NuSOAP. Once I had that in place, it was a simple pro-
cess of writing a few functions and bits and pieces to call the SOAP class,
query Google, then reformat the response to something a bit “lighter.”

I chose to implement a system that would accept a request for a single URL
(because at this stage [wasn’t too familiar with the RESTful way of doing
things) containing a number of parameters, depending on which method
was being called from Google. The information returned would depend on
the type of request, as outlined here:

~ aoogie S 1 2 i |
doGoogleSearch XML documem containing sﬁ’uch:rad lm‘nnnation al:-om Ihe
results and the actual search process
doGoogleSpellingSuggestion Plain text response containing suggested spelling correction
doGetCachedPage) ~ HTML source for the page requested

All the methods would also optionally return a standardized, XML-encodec
error message if something went wrong, which would allow developers tc
easily determine if their requests were successful.

Providing this interface required only a small amount of processing befort
returning the information back to the user. In the case of a call t«
doGoogleSearch, the results were just mapped across to the XML templat
then returned, doSpellingSuggestion just had to pull out the suggestion anc
send that back, while doGetCachedPage had to decode the result (from base-6
encoding) then strip off the first 5 lines of HTML, which contained a Googl
header. This allowed XooMLe to return just what the user requested; a clean
cached copy of a page, a simple spelling suggestion, or a set of results match
ing a search term. Searching was XooMLe’s first hurdle—returning SOAF
encoded results from Google in clean, custom XML tags, minus the “fluff.”

94 | Third-Party Google Services

XooMLe: The Google AP in Plain Old XML |

I chose to use an XML template rather than hardcoding the structure
directly into my code. The template holds the basic structure of a result set
returned from Google. It includes things like the amount of time the search
took, the title of each result, their URLS, plus other information that Google
tracks. This XML template is based directly on the structure outlined in the
WSDL and obviously on the actual information returned from Google. It is
parsed, and then sections of it are duplicated and modified as required, so
that a clean XML document is populated with the results, then sent to the
user. If something goes wrong, an error message is encoded in a different
XML template and sent back instead.

Once searching was operational, spelling suggestions were quickly added,
simply removing the suggestion from its SOAP envelope and returning it as
plain text. Moving on to the cached pages proved to require a small amount
of manipulation, where the returned information had to be converted back
to a plain string (originally a base-64 encoded string from Google) and then
the Google header, which is automatically added to the pages in their cache,
had to be removed. Once that was complete, the page was streamed back to
the user, so that if she printed the results of the request directly to the
screen, a cached copy of the web page would be displayed directly.

After posting the results of this burst of development to the DentedReality
web site, nothing much happened. No one knew about XooMLe, so no one
used it. I happened to be reading Dave Winer’s Scripting News, so I fired off
an email to him about XooMLe, just suggesting that he might be interested
in it. Five minutes later (literally) there was a link to it on Scripting News
describing it as a “REST-style interface,” and within 12 hours, I had received
approximately 700 hits to the site! It didn’t stop there; the next morning
when I checked my email, I had a message from Paul Prescod with some
suggestions for making it more RESTful and improving the general function-
ality of it as a service.

After exchanging a few emails directly with Prescod, plus receiving a few
other suggestions and comments from people on the REST-discuss Yahoo!
Group (which I quickly became a member of), I went ahead and made a
major revision to XooMLe. This version introduced a number of changes:

* Moved away from a single URI for all methods, introducing /search/,
/cache/ and /spell/ so that there was a unique URI for each method.

* Google’s limit of 10 results per query was bypassed by making XooMLe
loop through search requests, compiling the results, and sending them
back in a single XML document.

* Added a cachedVersion element to each result item, which contained a
link to retrieve a cached copy of a document via XooMLe.

Third-Party Google Services | 95

© XooMLe: The Google API in Plain Old XML

 If related information was available via Google, an additional link was
supplied that would retrieve those pages.

¢ Added an XLink to the URL, relatedInformation and cachedVersion ele-
ments of each returned result, which could be used to automatically cre-
ate a link via XML technologies.

* Added the ability to specify an XSLT when performing a search, mak-
ing it simple to use pure XML technologies to format the output in a
human-readable form.

And thus a RESTful web service was born. XooMLe implements the full
functionality of the Google API (and actually extends it in a few places),
using a much simpler interface and output format. A XooMLe result set can
be bookmarked, a spelling suggestion can be very easily obtained via a book-
marklet, results can be parsed in pretty much every programming language
using simple, native functions, and cached pages are immediately usable
upon retrieval.

XooMLe demonstrates that it was indeed quite feasible for Google to imple-
ment their API using the REST architecture, and provides a useful wrapper
to the SOAP functionality they have chosen to expose. It is currently being
used as an example of “REST done right” by a number of proponents of the
model, including some Amazon/Google linked services being developed by
one of the REST-discuss members.

On its own, XooMLe may not be particularly useful, but teamed with the
imagination and programming prowess of the web services community, it
will no doubt help create a new wave of toys, tools, and talking points.

How It Works

Basically, to use XooMLe you just need to “request” a web page, then do
something with the result that gets sent back to you. Some people might call
this a request-response architecture, whatever—you ask XooMLe for some-
thing, it asks Google for the same thing, then formats the results in a certain
format and gives it to you, from there on, you can do what you like with it.
Long story short—everything you can ask the Google SOAP API, you can
ask XooMLe.

Google Method: doGoogleSearch
* XooMLe URI: http://xoomle.dentedreality.com.au/search/

* Successful Response Format: Returns an XML-formatted response con-
taining the results of the Google-search that you specified.

96 | Third-Party Google Services

XooMLe: The Google API in Plain Old XML

* Failure Response: An XML-based error message, including all argu-
ments you sent to XooMLe (here’s an example: http://www.
dentedreality.com.au/xoomle/sample_error.xml). The message will
change, depending on what went wrong, as outlined below.

Extra Features

* maxResults: Also supports setting maxResults well above the Google-
limit of 10, performing looped queries to gather the results and then
sending them all back in one hit.

¢ cachedVersion: Each result item will include an element called “cached-
Version” which is a URI to retrieve the cached version of that particular
result.

* xsl: You may specify a variable called “xsl” in addition to the others in
the querystring. The value of this variable will be used as a reference to
an external XSLT Stylesheet, and will be used to format the XML out-
put of the document.

* relatedInformation: If it is detected that there is related information
available for a particular resultElement, then this element will contain a
link to retrieve those related items from XooMLe.

* xlink: There is now an xlink attribute added to the cachedVersion and
relatedInformation elements of each result.

Google Method: doSpellingSuggestion

* XooMLe URI: http://xoomle.dentedreality.com.au/spell/

* Successful Response Format: Returns a text-only response containing
the suggested correction for the phrase that you passed to Google
(through XooMLe). You will get HTTP headers and stuff like that as
well, but assuming you are accessing XooMLe over HTTP in the first
place, the body of the response is just text.

* Failure Response: An XML-based error message, including all argu-
ments you sent to XooMLe. The message will change, depending on
what went wrong.

Google Method: doGetCachedPage

* XooMLe URI: http://xoomle.dentedreality.com.au/cache/

* Successful Response Format: Returns the complete contents of the cached
page requested, WITHOUT THE GOOGLE INFORMATION-
HEADER. The header that Google adds, which says it’s a cached page, is
stripped out BEFORE you are given the page, so don’t expect it to be
there. You should get nothing but the HTML required to render the page.

Third-Party Google Services | 97

XooMLe: The Google API in Plain Old XML

* Failure Response: An XML-based error message, including all argu-
ments you sent to XooMLe.

Asking XooMLe Something (Forming Requests). Asking XooMLe something is
really easy; you can do it in a normal hyperlink, a bookmark, a Favorite,
whatever. A request to XooMLe exists as a URL, which contains some spe-
cial information. It looks something like this:

http://xoomle.dentedreality.com.au/search/
?key=YourGoogleDeveloperKeylg=dented+reality

Enough generic examples! If you are talking to XooMLe, the address you
need is:

http://xoomle.dentedreality.com.au/<method keyword>/

Your requests might look something like the previous example, or they
might be fully fleshed out like the following:

http://xoomle.dentedreality.com.au/seaxrch/

7key=YourKey

&g=dented+realty

&maxResults=1

&start=0

&hl=en

&ie=IS0-8859-1

&filter=0

&restrict=countryAU

&safeSearch=1

&lr=en

&ie=latin1

&oe=latin1

8xsl=myxsl.xsl

Note that each option is on a different line so they’re easier to read; prop-
erly formatted they would be in one long string.

All the available parameters are defined in the Google documentation, but
just to refresh your memory:

key means your Google Developer Key, go get one if you don’t have one
already (and remember to URL-encode it when passing it in the query string
as well!).

Another thing you might like to know is that XooMLe makes use of some
fancy looping to allow you to request more than the allowed 10 results in
one request. If you ask XooMLe to get (for example) 300 results, it will per-
form multiple queries to Google and send back 300 results to you in XML
format. Keep in mind that this still uses up your request limit (1,000 queries
per day) in blocks of 10 though, so in this case, you’d drop 30 queries in one
hit (and it would take a while to return that many results).

98 | Third-Party Google Services

XooMLe: The Google API in Plain Old XML

Error Messages

If you do something wrong, XooMLe will tell you in a nice little XML pack-
age. The errors all look something like this, but they have a different error
message and contain that “arguments” array, which includes everything you
asked it. Below are all the error messages that you can get, and why you will
get them.

Google API key not supplied
You forgot to provide XooMLe with your Google API key. You need
this so that XooMLe can communicate with Google on your behalf.
Specify it like this: key=insert key here and get one from Google if you
don’t have one already.

Search string not specified
You were smart enough to specify that you wanted to do a search (using
method=doGoogleSearch) but forgot to tell XooMLe what you were
searching for. Fix this by adding something like g=Your+search+terms
(your search phrase should be URL-encoded and is subject to the same
limitations as the Google API).

Invalid Google API key supplied
There’s something wrong with your Google API key (did you URL-
encode it like I told you?).

Your search found no results
This one should be rather obvious.

Phrase not specified
If you ask for a spelling suggestion (using method=doSpellingSuggestion),
you should also tell XooMLe what you are trying to correct, using
phrase=stoopid+speling+here. (URL-encode it.)

No suggestion available
Hey, Google ain’t perfect. Sometimes the attempts at spelling just don’t
even warrant a response (or possibly Google can’t decipher your bad
spelling).

URL not specified
You want a cached page from Google? The least you could do is ask for
it using url=http://thepagehere.com.

Cached page not available
Something was wrong with the cached page that Google returned (or it
couldn’t find it in the database). Not all Google listings have cached
pages available.

Couldn’t contact Google server

There was a problem contacting the Google server, so your request
could not be processed.

Third-Party Google Services | 99

XooMLe: The Google API in Plain Old XML

Putting XooMLe to Work: A SOAP::Lite Substitution Module

XooMLe is not only a handy way to get Google results in XML, it’s a handy
way to replace the required SOAP::Lite module that a lot of ISPs don’t sup-
port. XooMLe.pm is a little Perl module best saved into the same directory as
your hacks themselves.

XooMLe.pm

XooMLe is a drop-in replacement for SOAP::Lite designed to use
the plain old XML to Google SOAP bridge provided by the XooMLe
service.

package XooMLe;
use strict;
use LWP::Simple; use XML::Simple;

sub new {
my $self = {};
bless($self);
return $self;

}

sub doGoogleSearch {
my($self, %args); ($self, @args{qw/ key g start maxResults
filter restrict safeSearch lr ie oe /}) = @_;
my $xoomle_url = "http://xoomle.dentedreality.com.au’;

my $xoomle_service = 'search';
Query Google via XooMLe

my $content = get(
"$xoomle_url/$xoomle_service/?" .
join '&', map { "$_=$args{$_}" } keys %args

)s
Parse the XML my $results = XMLin($content);
Normalize

$results->{GoogleSearchResult}->{resultElements} =
$results->{GoogleSearchResult}->{resultElements}->{item};

foreach (@{$results->{GoogleSearchResult}->{ 'resultElements’}}) {
$_->{URL} = $_->{URL}->{content};
ref $_->{snippet} eq 'HASH' and $_->{snippet} = *';
ref $_->{title} eq 'HASH' and $_->{title} = '‘;

}

return $results->{GoogleSearchResult};

100 | Third-Party Google Services

XooMLe: The Google AP! in Plain Old XML

Using the XooMLe Module

Here’s a little script to show our home-brewed XooMLe module in action.
Its no different, really, from any number of hacks in this book. The only
minor alterations necessary to make use of XooMLe instead of SOAP::Lite
are highlighted in bold.

#!/usr/bin/perl

xoomle_google2csv.pl

Google Web Search Results via XooMLe 3rd party web service
exported to CSV suitable for import into Excel

Usage: xoomle_google2csv.pl "{query}" [> results.csv]

Your Google API developer's key
my $google_key = "insert key here';

use strict;

Uses our home-brewed XooMLe Perl module
use SOAP::Lite
use XoolMLe;

$ARGV[0] or die qg{usage: perl xoomle_search2csv.pl "{query}"\n};

Create a new XooMLe object rather than using SOAP::Lite
my $google search = SOAP::Lite->service("file:$google wdsl");
my $google_search = new XooMLe;

my $results = $google_search -> doGoogleSearch(
$google_key, shift @ARGV, 0, 10, "false", "",
"false", "", "latin1", "latin1”

)i
@{$results->{'resultElements'}} or warn 'No results';
print qgq{"title","url","snippet"\n};

foreach (@{$results->{'resultElements'}}) {
$_->{title} =~ s!"1""1g;
double escape " marks
$_->{snippet} =~ sI"I""lg;
my $output = qq{"$_->{title}","$_->{URL}","$_->{snippet}"\n};
drop all HTML tags
$output =~ sl<.+2>!lg;
print $output;

Running the Hack

Run the script from the command line, providing a query and sending the
utput to a CSV file you wish to create or to which you wish to append

Third-Party Google Services | 101

E Google by Email

additional results. For example, using "restful SOAP" as our query and
results.csv as our output:

$ perl xoomle_google2csv.pl "restful SOAP" > results.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal.

Applicability

In the same manner, you can adapt just about any SOAP::Lite-based hack in
this book and those you’ve made up yourself to use the XooMLe module.

1. Place XooMLe.pm in the same directory as the hack at hand.
2. Replace use SOAP::Lite; with use XooMLe;.

3. Replace my $google search = SOAP::Lite->service("file:$google_
wds1"); with my $google_search = new XooMLe;.

In general, bear in mind that your mileage may vary and don’t be afraid to
tweak.

See Also

¢ PoXML [Hack #53], a plain old XML alternative to SOAP::Lite

e NoXML [Hack #54], a regular expressions-based, XML Parser—free SOAP::
Lite alternative

—Beau Lebens and Rael Dornfest

E g Google by Email

#37 Access 10 of Google's search results at a time via email.

Long before the Web existed, there was email. And now, thanks to the Goo-
gle API, there’s Google email. Created by the team at Cape Clear (http://
capescience.capeclear.com/google/), CapeMail queries Google via email. Send
email to google@capeclear.com with the query you want on the subject line.
You’ll receive a message back with the estimated results count and the first
10 results. Here’s an excerpt from a search for Frankenstein:

Estimated Total Results Number = 505000

URL = "http://www.nlm.nih.gov/hmd/Frankenstein/frankhome.html"

Title = "Frankenstein Exhibit Home Page"

Snippet = "Table of Contents Introduction The Birth of Frankenstein,
The Celluloid Monster. Promise and Peril, Frankenstein: The Modern
Prometheus. ... "

URL = "http://www.literature.org/authors/shelley-mary/Frankenstein/"
Title = "Online Literature Library - Mary Shelley - Frankenstein"

102 | Third-Party Google Services

Simplifying Google Groups URLs

Snippet = "Next Back Contents Home Authors Contact, Frankenstein. Mary

Shelley. Preface; Chapter 1; Chapter 2; Chapter 3; Chapter 4;

Chapter 5; Chapter ... "
Like many other Google API applications, CapeMail may be used only 1,000
times per day; the Google API allows the use of the API key only 1,000 times
a day. Don’t rely on this to the exclusion of other ways to access Google. But
if you're in a situation where web searching is not as easy as email—you’re
using a mobile phone or PDA, for example—this is a quick and easy way to
interface with Google.

CapeMail Tricks

CapeMail comes in handy with the combination of an email application and
a way to automate sending messages (cron, for example). Say you’re
researching a particular topic—a relatively obscure topic but one that does
generate web page results. You could set up your scheduler (or even your
email program if able to send timed messages) to fire off a message to Cape-
Mail once a day, gather, and archive the search results. Further, you could
use your email’s filtering rules to divert the CapeMail pages to their own
folder for offline browsing. Make sure your search is fairly narrow, though,
because CapeMail returns only 10 results at a time.

Simplifying Google Groups URLs
#38 If the Google Groups URLs are a little too unwieldy, the Google Groups
Simplifier will cut them down to size.

Google Groups [Hack #30] can produce some rather abominable URLs for indi-
vidual posts. One message can generate a URL the likes of:
http://groups.google.com/groups?q=0%27reilly+%¥22mac+os+x%22
8hl=en8lr=&ie=UTF-8&oe=utf-8&scoring=d
&selm=ujaotqldn50004%40corp. supernews.com&rnum=37
This is a difficult URL to save and reference—not to mention emailing to a
colleague.

Andrew Flegg's Google Groups Simplifier (http://www.bleb.org/google/)
munges Groups URLs, compacting them down into something more man-
ageable yet still allowing them to function as before.

This is a handy little tool. To use, it copy the URL that you want to make
smaller and paste it into the form on the Google Groups Simplifier page.
The URL above simplifies to:

http://groups.google.com/groups?selm=ujaotqldn50004%40
COID.SUDEINEwWs . com

Third-Party Google Services | 103

Simplifying Google Groups URLs

Note that this URL is from an individually viewed message
and not from a message thread (which is several messages in
a framed page). If you try to simplify a thread’s URL, you'll
get an error message from the Google Groups Simplifier.

How does this work? The Google Groups Simplifier chops off everything
but the &selm= part. Not very difficult to do, but the URLSs are so large that
it’s handy to have an automated way to do it so you don’t remove more of
the URL than you need to.

If you plan to use this tool a lot, the Simplifer also offers a bookmarklet from
the front page.

Other URL-Shortening Options

The Google Groups Simplifier is handy, because it shortens the URL while
still making clear where the URL comes from. A glance at it and you know
that the URL is from Google Groups. However, in some cases you might
find that the URL is still too long and you need to shorten it still further. In
that case, you might want to use one of the URL-shortening services.

URL-shortening services generate unique codes for each URL provided,
allowing extremely long URLs to be compressed into much shorter, unique
URLs. For example, Yahoo! News URLs can be terribly long, but with
TinyURL, they can be shortened to something like http:/tinyurl.com/2ph8.
(Note: these URLs are not private so don’t treat them as such. TinyURL
whacking—http://marnanel.org/writing/tinyurl-whacking—covers making up
TinyURLs to find sites other people have fed to the system.)

Don’t use these services unless you absolutely have to,
though; they obscure the origin of the URL, making the
URLSs difficult to track for research. They do come in handy
if you have to reference a page cached by Google. For exam-
ple, here’s an URL for a cached version of oreilly.com: http://
216.239.39.100/search?q=cache: ThOF_622vaYC:www.oreilly.
com/+oreillytrhl=ené&ie=UTF-8. While it’s not as long as a
typical Google Groups message URL, it’s long enough to be
difficult to paste into an email and otherwise distribute.

TinyURL (http://www.tinyurl.com) shortens URLs to 23 characters. A book-
marklet is available. The service converted the Google Groups URL at the
beginning of this hack to http://tinyurl.com/180q.

MakeAShorterLink (http://www.makeashorterlink.com/) shortens URLs to
about 40 characters, which when clicked, take the browser to “gateway”

104 | Third-Party Google Services

What Does Google Think Of...

pages with details of where they’re about to be sent, after which the browser
is redirected to the desired URL. MakeAShorterLink converted that Google
Groups URL to http://makeashorterlink.com/?A2FD145A1.

Shorl (http://www.shorl.com), in addition to shorting URLs to about 35 char-
acters, tracks click-through statistics for the generated URL. These stats may
only be accessed by the person creating the Shorl URL using a password
generated at the time. Shorl turned the Groups URL above into http:/www.
shorl.com/jasomykuprystu, with the stats page at http://shorl.com/stat.
php?id=jasomykuprystu&pwd=jirafryvukomuha. Note the embedded
password (pwd=jirafryvukomuha).

ﬁ What Does Google Think Of...
#39 What does Google think of you, your friends, your neighborhood, or your
favorite movie?

If you’ve ever wondered what people think of your home town, your favor-
ite band, your favorite snack food, or even you, Googlism (http://www.
googlism.com/) may provide you something useful.

The Interface

The interface is dirt simple. Enter your query and check the appropriate
radio button to specify whether you’re looking for a who, a what, a where,
or a when. You can also use the tabs to see what other objects people are
searching for and what searched-for objects are the most popular. A word of
warning: some of these are not work-safe.

What You Get Back

Googlism will respond with a list of things Google believes about the query
at hand, be it a person, place, thing, or moment in time. For example, a
search for Perl and “What” returns, along with a laundry list of others:

Perl is a fairly straightforward

Perl is aesthetically pleasing
Perl is just plain fun

Among the more humorous results for Steve Jobs and “Who” are:

steve jobs is my new idol

steve jobs is at it again

steve jobs is apple's focus group
To figure out what page any particular statement comes from, simply copy
and paste it into a plain old Google search. That last statement, for instance,
came from an article titled “Innovation: How Apple does it” at http:/lwww.
gulker.com/ra/appleinnovation.html.

Third-Party Google Services | 105

GooglePeople

Practical Uses

For the most part this is a party hack—a good party hack. Its a fun way to
aggregate related statements into a silly (and occasionally profound) list.

But that’s just for the most part. Googlism also works as a handy ready-ref-
erence application, allowing you to quickly find answers to simple or sim-
ply-asked questions. Just ask them of Googlism in a way that can end with
the word is. For example, to discover the capital of Virginia enter The
capital of Virginia. To learn why the sky is blue try The reason the sky is
blue. Sometimes this doesn’t work very well; try the oldest person in the
world and you’ll immediately be confronted with a variety of contradictory
information. You’d have to visit each page represented by a result and see
which answer, if any, best suited your research needs.

Expanding the Application

This application is a lot of fun, but it could be expanded. The trick is to
determine how web page creators generate statements.

For example, when initially describing an acronym, many writers use the
words “stands for.” So you could add a Googlism that searches for your key-
word and the phrase “stands for.” Do a Google search for "SETI stands for"
and "DDR stands for" and you’ll see what I mean.

When referring to animals, plants, and even stones, the phrase “are found”
is often used, so you could add a Googlism that located things. Do a Google
search for sapphires are found and jaguars are found and see what you find.

See if you can think of any phrases that are in common usage, and then
check those phrases in Google too see how many results each phrase has.
You might get some ideas for a topic-specific Googlism tool yourself.

g GooglePeople

People who need GooglePeople are the luckiest people in the world.

Sometimes on the Web it’s hard to separate the signal from the noise. It’s
also hard to separate information about people from information about
everything else. That's where GooglePeople (http://www.avaquest.com/
demos/GooglePeople/GooglePeople.cgi) comes in. GooglePeople takes a
“Who Is” or “Who Was” query (e.g., “Who was the first man on the
moon?” or “Who was the fifth president of the United States?”) and offers a
list of possible candidates. It works well for some questions, but for others
it’s way off base.

106 | Third-Party Google Services

e
Using GooglePeople

GooglePeople is simple: enter a “Who Is” or “Who Was” question in the
query box. GooglePeople will think about it for a minute or three and pro-
vide you with a list of possible candidates to answer your question, with the
most likely candidate on top, the other candidates listed underneath and
rated for relevance with a series of asterisks.

Click a candidate name for a Google query integrating your original query
and the candidate’s name; this provides a quick test of the validity and use-
fulness of the GooglePeople query at hand.

Tips for Using GooglePeople

I found that for some questions GooglePeople worked very well. Who was
the first African American woman in space? was answered perfectly. But
some questions had GooglePeople perplexed.

Books and authors. GooglePeople seems to have a bit of trouble with identi-
fying the authors of fiction books. For example, asking Who is the author of
"Galahad at Blandings", GooglePeople will not confidently give an answer
but will suggest that the most likely person is Bertie Wooster. Bertie is close,
but no cigar; he’s a fictional character created by the same author of Gala-
had at Blandings—P. G. Wodehouse—but he’s far from an author. Google-
People was able to state with confidence that Mark Twain was the author of
Huckleberry Finn.

Numbers. Sometimes expressing numbers as numbers (Ist) rather than
words (first) makes a lot of difference in results. Asking GooglePeople about
the first person to do something versus the “lst” person to do something
can lead to very different results, so be sure to try both versions.

Mind your questions. Finally, don’t try subjective questions if you seriously
expect a good answer. Asking GooglePeople, Who's the most popular
singer? or Who is the smartest person in the world? can net you some
wild answers.

Using GooglePeople

While GooglePeople can appear to be a toy, it does come in handy for
ready-reference questions. Obviously, you should be sure to double-check
any answers you get against the full list of web answers for your question.
And remember, just because it’s on the Web doesn’t mean it’s credible!

Third-Party Google Services | 107

CHAPTER FOUR

Non-API Google Applications
Hacks #41-49

As you've seen so far in this book, amazing things can be done with Google
data access without ever using the Google API. This section of the book
deals with Google applications that scrape Google’s HTML to access its data
rather than use the sanctioned Google APIL.

Scraping Versus the API

What is scraping and how is it different from using the Google API? Scrap-
ing is the act of using a program to pull information from an HTML page.

The Google API, on the other hand, allows you to query Google’s search
data directly, instead of pulling information from saved HTML as the scrap-
ers in this section do.

Why Scrape Google Data?

Why have Google scrapers in this book anyway? Can’t you do everything
with the Google API? Alas, you can’t. The Google API is a great way to
search Google’s main body of web pages, but it doesn’t go much further
than that. It’s even limited in what it can pull from Google’s main web
search. For example, the Google API can’t do a phonebook search. And it
can’t access the data from Google News, Google Catalogs, or most of Goo-
gle’s other specialty search properties.

That’s too bad, because cool things can be done with the data from those
searches. Need to track news stories for a certain topic? It’s a lot easier to
access several compiled searches from a spreadsheet than to manually scan
HTML pages. Plus, once the information is loaded into a spreadsheet, you
can resort and manipulate the data just about any way you please.

108

Things to Keep in Mind While Scraping

Though the programs provided in this section will provide you with hours of
fun Google scraping, there are a few things you’ll need to keep in mind.

Scrapers break. These scrapers are built based on the format of the Google
results at this writing. If the format of results changes significantly,
scrapers can, and will, break.

Don’t automate your scraping. It might be tempting to go one step further

and create programs that automate retrieving and scraping of Google
pages.
Don’t do it. Retrieving Google pages by any automated methods other
than Google’s API is against Google’s Terms of Service (TOS). So what,
you might think. After all, they can’t find you, right? They might not be
able to find you specifically, but they can ban access from an entire
block of IP addresses based on your IP address, affecting you and others
around you. Would they do this? They would and they have. See http://
news.com.com/2100-1023-883558.html for information about a Com-
cast block that took place in early 2002.

Search results have limits. Remember that even though you're scraping
saved result pages, you’re still subject to the limitations of Google’s
search—you can’t get more than 1,000 results for a web search, for
example. That said, make sure that you've set up your web search to get
the most out of each scraped page. Make sure you’re getting 100 results

per page.

Using Scraped Data Files

Once you’ve got some results, scraped them, and saved them to a comma-
delimited file, what use are they?

Most of the time, you think of comma-delimited files as spreadsheet files,
but they’re more versatile than that. Comma-delimited files can be loaded
into databases and different data-handling programs. You could even write a
Perl program that did something interesting with comma-delimited files (or
get a geek friend to write it for you).

But the best thing about comma-delimited files is that they age well. They’re
just text files. You can use them with several different programs, you don’t
have to worry about compatibility issues, and they’re small.

Non-API Google Applications | 109

- Don't Try This at Home

Not Fancy but Handy

Google scraping applications aren’t as complicated as Google API applica-
tions, nor are they anywhere near as glamorous. But if you're trying to save
search results from a variety of Google’s properties, they really do come in
handy.

ﬂ Don’t Try This at Home
Google tools that violate Google's Terms of Service.

Despite all that the Google API does, there are folks (myself included) who
wish it would do more. Then there are those who started building program-
matic access to Google long before an the API became available. This survey
covers a few of them.

We present them here for two reasons: to give you an idea what software
you don’t want to use if you have a concern about being banned from Goo-
gle, and to inspire you. This software wasn’t written because someone was
sitting around trying to violate Google’s TOS; it was written because some-
one simply wanted to get something done. They’re creative and pragmatic
and well worth a look.

ing of the database except in conjunction with the Google
API. Automatic searching for whatever reason is a big no-no.
Google can react to this very strongly; in fact, they have tem-
porarily banned whole IP address blocks based on the
actions of a few, so be careful what you use to query Google.

i Google’s Terms of Service (TOS) prohibit automated query-

Don’t Try These at Home
Here is a list of tools to avoid, unless you don’t mind getting yourself banned:

Gnews2RSS (http://www.voidstar.com/gnews2rss.php?q=news&num=15)
Turns a Google News search into a form suitable for syndication.

WebPosition Gold (http://www.webposition.com/)
Performs a range of tasks for web wranglers, including designing more
search engine—friendly pages, supporting automated URL submissions,
and analyzing search engine traffic to a site. Unfortunately, their auto-
mated rank-checking feature violates Google’s Terms of Service. This
program does so many things, however, that you could consider using it
for some position-checking tasks alone.

110 | Non-API Google Applications

Building a Custom Date-Range Search Form |

AgentWebRanking (http://www.agentwebranking.com/)
Checks your web page’s ranking with dozens of major search engines all
over the world. That search engine list also includes Google, though the
program violates Google’s Terms of Service by going around the Goo-
gle APL

Other Programs to Be Concerned About
When reviewing search engine tools, keep an eye out for those that:

* Offer an automated check of rankings in Google without requiring a
developer’s key

* Offer an automated search and retrieval of special collections not cov-
ered by the Google API, such as Google News and Google Catalogs

* Frame, metasearch, or otherwise use Google’s content without appar-
ent agreement or partnership with Google

i Building a Custom Date-Range Search Form

Search only Google pages indexed today, yesterday, the last 7 days, or last
30 days.

Google has a date-based search [Hack #11] but uses Julian dates. Most people
can’t convert Gregorian to Julian in their heads. But with a conversion for-
mula and a little Perl scripting, you can have a Google search form that
offers to let users search Google pages indexed today, yesterday, the last
seven days, or the last 30 days.

The Form

The frontend to the script is a simple HTML form:

<form action="http://path/to/cgi-bin/goofresh.cgi"
method="get">

Search for:

<input type="text" name="query" size="30" />

<p >

Search for pages indexed how many days back?

<select name="days back">

<option value="0">Today</option>

<option value="1">Yesterday</option>

<option value="7">Last 7 Days</option>

<option value="30">Last 30 Days</option>

</select>

<p />

<input type="submit" value="Search">

</form>

Non-API Google Applications | 111

) Building a Custom Date-Range Search Form

The form prompts for two user inputs. The first is a Google query, replete
with support for special syntaxes [in “The Special Syntaxes” in Chapter 1] and syntax
mixing [Hack #8]; after all, we’ll just be passing your query along to Google
itself. The second input, a pull-down list, prompts for how many days’
worth of search the form should perform.

This hack requires an additional module, Time::JulianDay,
and won’t run without it (http://search.cpan.org/

search?query=Time%3A%3A]JulianDay).

The Code

Note that this script just does a couple of date translations in Perl and redi-
rects the browser to Google, altered query in tow. It’s just a regular query as
far as Google is concerned and so doesn’t require a developer’s API key.

#!/usr/local/bin/perl

goofresh.cgi

searches for recently-Indexed files on google

usage: goofresh.cgi is called as a CGI with form input,
redirecting the browser to Google, altered query in tow

use CGI qw/:standard/;
use Time::JulianDay;

build a URL-escaped query
(my $query = param('query')) =~ s#(\W)#sprintf("%%%02x", ord($1))#ge;

how many days back?
my $days_back = int param('days_back') || 0;

what's the current julian date?
my $julian_date = int local_julian_day(time);

redirect the browser to Google with query in tow
print redirect(

"http://www.google.com/search?num=100" .

“&q=$query" .

"+daterange¥3A" . ($julian_date - $days_back) . "-$julian_date"
)s

Hacking the Hack

If you don’t like the date ranges hardcoded into the form, make up your
own and adjust the form accordingly:

<form action="http://path/to/cgi-bin/goofresh.cgi"
method="get">

Search for:

<input type="text" name="query" size="30" />

112 | Non-API Google Applications

Building Google Directory URLs -
<p />

Search for pages indexed how many days back?

<select name="days_back">

<option value="0">Today</option>

<option value="30">Around 1 Month</option>
<option value="60">Around 2 Months</option>
<option value="90">Around 3 Months</option>
<option value="365">1 Year</option>
</select>

<p />

<input type="submit" value="Search">
</form>

Or simply let the user specify how many days to go back in a text field:

«form action="http://path/to/cgi-bin/goofresh.cgi”
method="get">

Search for:

<input type="text" name="query" size="30" />

<p />

Search for pages indexed how many days back?

<input type="text" name="days_back" size="4"
maxlength="4" />

<p />

<input type="submit" value="Search">

</form>

i Building Google Directory URLs
#43 This hack uses ODP category information to build URLs for the Google
Directory.

The Google Directory (http://directory.google.com/) overlays the Open Direc-
tory Project (or “ODP” or “DMOZ,” http://www.dmoz.org/) ontology onto
the Google core index. The result is a Yahoo!-like directory hierarchy of
search results and their associated categories with the added magic of Goo-
gle’s popularity algorithms.

The ODP opens its entire database of listings to anybody—provided you're
willing to download a 205 MB file (and that’s compressed!). While you’re
probably not interested in all the individual listings, you might want particu-
lar ODP categories. Or you may be interested in watching new listings flow-
ing into certain categories.

Unfortunately, the ODP does not offer a way to search by keyword sites
added within a recent time period. (Yahoo! does offer this.) So instead of
searching for recently added sites, the best way to get new site information
from the ODP is to monitor categories.

Non-AP| Google Applications | 113

. Building Google Directory URLs

Because the Google Directory does build its directory based on the ODP
information, you can use the ODP category hierarchy information to gener-
ate Google Directory URLs. This hack searches the ODP category hierarchy
information for keywords you specify, then builds Google Directory URLs
and checks them to make sure they're active.

You'll need to download the category hierarchy information from the ODP
to get this hack to work. The compressed file containing this information is
available from http://dmoz.org/rdf.html. The specific file you're after is http://
dmoz.org/rdf/structure.rdf.u8.gz. Before using it, you must uncompress it
using a decompression application specific to your operating system. In the
Unix environment, this looks something like:

% gunzip structure.rdf.u8.gz

Bear in mind that the full category hierarchy is over 35 MB. If you just want
to experiment with the structure, you can get a excerpt at http://dmoz.org/
rdf/structure.example.txt. This version is a plain text file and does not
require uncompressing.

The Code

#!/usx/bin/perl

google_dir.pl

Uses ODP category information to build URLs into the Google Directory.
Usage: perl google dir.pl "keywords" < structure.rdf.u8

use strict;
use LWP::Simple;

Turn off output buffering
$]++;

my $directory url = "http://directory.google.com”;

$ARGV
or die gq{usage: perl google dir.pl "{query}" < structure.rdf.u8\n};

Grab those command-line specified keywords and build a regular expression
my $keywords = shift @ARGV;
$keywords =~ s!\s+!I\]|!g;

A place to store topics
my %topics;

Loop through the DMOZ category file, printing matching results
while (<) {
/" (Top\/.*$keywords.*)"/i and !$topics{$1}++
and print "$directory url/$1\n";

114 | Non-API Google Applications

Scraping Google Results '

Running the Hack

Run the script from the command line, along with a query and the piped-in
contents of the DMOZ category file:

% perl googledir.pl "keywords" < structure.rdf.u8
If you’re using the shorter category excerpt, structure.example.txt, use:

% perl googledir.pl "keywords" < structure.example.txt

The Results
Feeding this hack the keyword mosaic would look something like:

% perl googledir.pl "mosaic” < structure.rdf.us
http://directory.google.com/Top/Arts/Crafts/Mosaics
http://directory.google.com/Top/Arts/Crafts/Mosaics/Glass
http://directory.google.com/Top/Arts/Crafts/Mosaics/Ceramic_and _Broken_China
http://directory.google.com/Top/Arts/Crafts/Mosaics/Associations_and_
Directories

http://directory.google.com/Top/Arts/Crafts/Mosaics/Stone
http://directory.google.com/Top/Shopping/Crafts/Mosaics
http://directory.google.com/Top/Shopping/Crafts/Supplies/Mosaics

Hacking the Hack

There isn’t much hacking you can do to this hack; it’s designed to take ODP
data, create Google URLs, and verify those URLs. How well you can get this
to work for you really depends on the types of search words you choose.

Do choose words that are more general. If you're interested in a particular
state in the U.S., for example, choose the name of the state and major cities,
but don’t choose the name of a very small town or of the governor. Do
choose the name of a company and not of its CFO. A good rule of thumb is
to choose the keywords that you might find as entry names in an encyclope-
dia or almanac. You can easily imagine finding a company name as an ency-
clopedia entry, but it’s a rare CFO who would rate an entry to themselves in
an encyclopedia.

Scraping Google Results

Scraping the results of a Google search into a comma-delimited file.

Because you can use the Google API to get results and put them in any for-
mat you like, why in the world would you bother to do a manual search
result on Google, save the results, and then scrape them with a Perl pro-
gram? You might not want, or indeed be able, to do anything as fancy as the

Non-API Google Applications | 115

- Scraping Google Results

Google API allows; you might just want to grab some results, drop them
into a spreadsheet, and go.

Just like we did in Peeling Phone Numbers [Hack #49], you can save Google
web search results to a file, and then process them into a comma-delimited
text file with a short Perl script.

' Be sure to set your preferences [Hack #1] to 100 results per
page to get the most out of this hack.

The Code

#!/usr/bin/perl

google2csv.pl # Google Web Search Results exported to CSV suitable
for import into Excel

Usage: perl google2csv.pl < results.html > results.csv

print qq{"title","url","size","domain suffix"\n};
my($results) = (join '', <) =~
ml<divy(.*?)</div> Imis;

while ($results ="~
ml<p>(.+?).+2\s+-\s+(\d+k)? Imgis
) {
my($url,$title, $size) = ($1]]'',%$2]|"'",$311"");
my($suffix) = $url =~ mi\.(\wt)/!;
$title =~ sI"1""lg; # double escape " marks
$title =~ sl<.+?>!lg; # drop all HTML tags print
qq{"$title","$url", "$size","$suffix"\n};

Running the Script

Run the script from the command line, specifying the result’s HTML file-
name and name of the CSV file you wish to create or to which you wish to
append additional results. For example, using results.html as input and
results.csv as output:

$ perl google2csv.pl < results.html > results.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal:

$ perl google2csv.pl < results.html

116 | Non-API Google Applications

Scraping Google AdWords

The Results

Here’s a sample run on the results of a search for Mac OS X:

$ perl google2csv.pl < results.html

"title","url”,"size","domain suffix"

“Apple - Mac 0S X","http://www.apple.com/macosx/","","com"

"Apple - Software - Mac 0S X Server","http://www.apple.com/server/",
"29k","com"

"Mac 0S X Development”,"http://developer.apple.com/macosx/","28k","com"
"Mac 0S X Hints - Get the most from X!","http://www.macosxhints.com/",
nll’ncomll

"Mac 0S X Apps - The Source For Mac 0S X Software”,
“http://www.macosxapps.com/","39k","com"

"VersionTracker.com - free Macintosh software downloads for Mac

0S ... ","http://www.versiontracker.com/macosx/","101k","com"
"0'Reilly Mac 0S X Conference”,
"http://conferences.oreillynet.com/macosx2002/","25k", " com"

"MacNN | 05 X","http://osx.macnn.com/","94k","com"

*222? - Mac 0S X","http://www.apple.co.jp/macosx/","43k","jp"

"Apple - Support - Mac 0S X",
“http://www.info.apple.com/usen/macosx/","36k","com”

You’ll see that the program records four attributes to the CSV file: title,
URL, size (when available), and top-level domain. The “snippet” of web
page usually included with a Google result was omitted, because it’s diffi-
cult to read in a spreadsheet format.

So why include the page size and domain? Research. If you’re generating a
set of results to be referred to later, it’s handy to be able to sort them by suf-
fix. “edu” results tend to be different from “org” results, which tend to be
different from “com” results, and so on. Not to mention differing result sets
by country, .uk versus .jp, for instance. And if you’re generating links to con-
tact later (to ask for a reciprocal link, for example), it’s handy to be able to
set apart the less-commercial suffixes such as .edu and .org.

Scraping Google AdWords
Scrape the AdWords from a saved Google results page into a form suitable
for importing into a spreadsheet or database.

Google’s AdWords™—the text ads that appear to the right of the regular
search results—are delivered on a cost-per-click basis, and purchasers of the
AdWords are allowed to set a ceiling on the amount of money they spend on
their ad. This means if even if you run a search for the same query word
multiple times, you won’t necessarily get the same set of ads each time.

Non-API Google Applications | 117

u Scraping Google AdWords

If you’re considering using Google AdWords to run ads, you might want to
gather up and save the ads that are running for the query words you’re inter-
ested in. Google AdWords are not provided by the Google API; of course
you can’t automatically scrape Google’s results outside the Google API,
because it’s against Google’s Terms of Service.

This hack will let you scrape the AdWords from a saved Google results page
and export them to a CSV (comma-separated value) file, which you can then
import into Excel or your favorite spreadsheet program.

This hack requires an additional Perl module, HTML::
TokeParser (http://search.cpan.org/search?query=htmL
%3A%3Atokeparser&mode=all). You'll need to install it
before the hack will run.

The Code

#!/usr/bin/perl
usage: perl adwords.pl results.html

use strict;
use HTML::TokeParser;
die "I need at least one file: $!\n"
unless @ARGV;
my @Ads;
for my $file (@ARGV){
skip if the file doesn't exist
you could add more file testing here.
errors go to STDERR so they won't
pollute our csv file
unless (-e $file) {
warn "What??: $file -- $! \n-- skipping --\n";
next;
}
now parse the file
my $p = HTML::TokeParser->new($file);
$p is a kind of iterator and everything
in the given file is a token. We are going to
iterate through them all but we might throw them away
if they aren't what we are looking for.
run this: perldoc HTML::TokeParser
while(my $token = $p->get_token) {
look for a start token whose name is 'td’
and has an attribute named 'id' and that
attribute's value is 'taw' followed by one
or more digits.
next unless $token->[0] eq 'S’
and $token->[1] eq 'td'
and $token->[2]{id} =~ /taw\d+/;
$ad is a hash ref that will hold our

118 | Non-API Google Applications

}
}

Scraping Google AdWords

data for this ad.
my $ad;
if we are here we found the td tag. It also has
the url we want
we strip off the 'go to' stuff
($ad->{url}) = $token->[2]{onmouseover} =~ /go to ([*"]+)'/;
now go directly to the next anchor tag
my $link = $p->get_tag('a');
grab the href attribute and clean it up
$ad->{href} = $link->[1]{href};
$ad->{href} =~ s|/url\?2g=||;
the adwords are the text upto the closing tag
$ad->{adwords} = $p->get_trimmed text('/a');
Now look at every token looking for text.
Unless the text matches 'Interest:' it is
description text so we add it to the description.
If it is the 'Interest:' token then
we want to move to the next img token
and grab the 'width' attribute's value
while(my $token = $p->get_token) {
this will skip all the
 and tags
next unless $token->[0] eq 'T';
unless($token->[1] =~ /Interest:/) {
$ad->{desc} .= ' " . $token->[1];
next;
}
my $img = $p->get_tag('img');
$ad->{interest} = $img->[1]{width};
last; # we are done
}
the url is also in this description but
we don't need it. We already found it.
$ad->{desc} =~ s/$ad->{url}.*//;
change two or more whitespace characters into one space.
$ad->{desc} =~ s/\s{2,}/ /g;
there is nothing else to look for so
we add this ad to our list of ads.
push(@Ads, $ad);

print quoted(gqw(AdWords HREF Description URL Interest));
for my $ad (@Ads) {
print quoted(@$ad{qw(adwords href desc url interest)});

}

we want a csv (comma separated values)
so excel will open it without asking
any questions. So we have to print quote marks
sub quoted {
return join(",", map { "'$_"" } @_)."\n";

}

Non-AP1 Google Applications | 119

' . Scraping Google AdWords

How It Works

Call this script on the command line, providing the name of the saved Goo-
gle results page and a file in which to put the CSV results:

% perl adword input.html > output.csv

input.html is the name of the Google results page you've saved. output.csv is
the name of the comma-delimited file to which you want to save your
results. You can also provide multiple input files on the command line if
you'd like:

% perl adword input.html input2.html > output.csv

The Results

The results will appear in a comma-delimited format that looks like this:

"AdWords", "HREF", "Description”,"URL","Interest"

"Free Blogging Site","http://www.1sound.com/ix",

" The ultimate blog spot Start your journal now ", "www.lsound.com/ix","40"
"New Webaga Blog","http://www.webaga.com/blog.php",

" Fully customizable. Fairly inexpensive. ","www.webaga.com","24"

"Blog this","http://edebates.e-thepeople.org/a-national/article/10245/
viewd",

" Will online diarists rule the Net strewn with failed dotcoms? ",
"e-thePeople.org","26"

"Ford - Ford Cars","http://quickquote.forddirect.com/FordDirect.jsp",

" Build a Ford online here and get a price quote from your local dealer! ",
"www.forddirect.com”,"40"

"See Ford Dealer's Invoice","http://buyingadvice.com/search/",

" Save $1,400 in hidden dealership profits on your next new car. ",
"buyingadvice.com","28"
"New Ford Dealer Prices","http://www.pricequotes.com/",

" Compare Low Price Quotes on a New Ford from Local Dealers and Save! ",

"www.pricequotes.com","25"
(Each line was prematurely broken for the purposes of publication.)

You'll see that the hack returns the AdWords headline, the link URL, the
description in the ad, the URL on the ad (this is the URL that appears in the
ad text, while the HREF is what the URL links to0), and the Interest, which is
the size of the Interest bar on the text ad. The Interest bar gives an idea of
how many click-throughs an ad has had, showing how popular it is.

Hacking the Hack

You might find that the hack as it’s written provides too much information.
Instead of the information above, you might want a little less information, or
you might want it in a different order.

120 | Non-API Google Applications

Sa—

my @headers = qw(AdWords HREF Description URL Interest);
print '"',join('",""',@headers),'"","\n";
for my $ad (@Ads) {
print '"", join('","",
$ad->{adwords},
$ad->{href},
$ad->{desc},
$ad->{url},
$ad->{interest}),"'"","\n";

The code you’ll need to change is in one section.

The first part you'll need to change is the lower part, beginning with print
"", join. As you see, each line corresponds to part of the data written to the
comma-delimited file. Simply rearrange the lines in the order you want
them, omitting the information you don’t want.

For example, you might want the Adwords title, the URL, and the descrip-
tion, in that order. Your code would look like this:
print '"',join('",""',@headers),"'"","\n";
for my $ad (@Ads) {
print '"*, join('","",
$ad->{adwords},
$ad->{url},
$ad->{desc}),"'"","\n";
Once you've made the changes to that you'll have to change the “header
line” that tells Excel what each field is. That’s at the top of the code snippet:

my @headers = qw(AdWords HREF Description URL Interest);

You'll need to rearrange the words in parentheses to match the information
that you’re outputting to the CSV file. In the case above, where I'm saving
just the AdWords title, URL, and description, the line would look like this:

my @headers = qw(AdWords URL Description);

See Also
* Getting the Most out of AdWords [Hack #99]

—Tara Calishain and Tim Allwine

Scraping Google Groups

Pulling results from Google Groups searches into a comma-delimited file.

!

It’s easy to look at the Internet and say it’s web pages, or it’s computers, or
it’s networks. But look a little deeper and you’ll see that the core of the Inter-
net is discussions: mailing lists, online forums, and even web sites, where

Non-API Google Applications | 121

86 Scraping Google Groups

people hold forth in glorious HTML, waiting for people to drop by, consider
their philosophies, make contact, or buy their products and services.

Nowhere is the Internet-as-conversation idea more prevalent than in Usenet
newsgroups. Google Groups has an archive of over 700 million messages
from years of Usenet traffic. If you're doing timely research, searching and
saving Google Groups message pointers comes in really handy.

Because Google Groups is not searchable by the current version of the Goo-
gle API, you can’t build an automated Google Groups query tool without
violating Google’s TOS. However, you can scrape the HTML of a page you
visit personally and save to your hard drive.

Saving Pages

The first thing you need to do is run a Google Groups search. See the Goo-
gle Groups [Hack #30] discussion for some hints on best practices for searching
this message archive.

It’s best to put pages you're going to scrape in order of date; that way if
you’re going to scrape more pages later, it’s easy to look at them and check
the last date the search results changed. Let’s say you're trying to keep up
with uses of Perl in programming the Google API; your query might look
like this:

perl group:google.public.web-apis

On the righthand side of the results page is an option to sort either by rele-
vance or date. Sort it by date. Your results page should look something like
Figure 4-1.

Save this page to your hard drive, naming it something memorable like
groups.html.

Scraping Caveats

There are a couple of things to keep in mind when it comes to scraping
pages, Google or not:

Scraping is brittle. A scraper is based on the way a page is formatted at the
time the scraper is written. This means one minor change in the page,
and things break down rather quickly.

There are myriad ways of scraping any particular page. This is just one of
them, so experiment!

122 | Non-API GoogIeAppllcationg

Scraping Google Groups -

!!0“”!” 9009

_ Advanced Groups Search Preferences Groups Help
" e group-gmoge publcweb-apis | (Coogeseren

m

Re: Perl Problem?

You may want fo upgrade your SOAP::Lite API. Ih-da;:uhk:nulﬂlﬂhl|amhngal
the same line too, when | used SOAP::Lite 0.51. | upgraded to SOAP::Lite 0.52 ..
google. public.web-apis - Aug. 23, 2002 by S Anand - View Thread (2 articles)

Proxy usage from Perl script

Hi, I have just started using the googleAP| and wanted to use it in a perl program.
Since i am behind a firewall with a proxy-server , the default sample ...
google.public.web-apis - Jun. 29, 2002 by Varun -

ﬁunks sammmﬁuduﬁmswmhmmmmmm
mmﬁummdmownbhnﬂmmmm;wﬂ Jlive ...
google.public.web-apis - May. 2, 2002 by R. M. Kelleher - View Thread (3 articles)

Figure 4-1. Results of a Google Groups search

The Code

groups2csv.pl
Google Groups results exported to CSV suitable for import into Excel
Usage: perl groups2csv.pl < groups.html > groups.csv

The CSV Header
print qg{"title","url","group","date","author","number of articles"\n};

The base URL for Google Groups
my $url = "http://groups.google.com”;

Rake in those results
my($results) = (join "', <);

Perform a regular expression match to glean individual results

while ($results =~ ml<p>(.+2)<font size=-1(.+?)

Non-API Google Applications | 123

- Scraping Google Groups

(.+?)\s+-\s+(.+2)\s+by\s+(.+2)\s+-.+2\((\
d+) articles!mgis) {
my($path, $title, $snippet, $group, $date, $author, $articles) =
(B2]]"",82]]"",83[]"",%4]|"",85]]"",%6]["",$7[|'");
$title =~ s!"1""lg; # double escape " marks
$title =~ sl<.+2>!1g; # drop all HTML tags
print gqq{"$title","S$url$path”,"$group”,"$date","$author","$articles"\n};

Running the Hack

Run the script from the command line, specifying the Google Groups results
filename you saved earlier and name of the CSV file you wish to create or to
which you wish to append additional results. For example, using groups.html
as your input and groups.csv as your output:

$ perl groups2csv.pl < groups.html > groups.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal.

Using a double >> before the CSV filename appends the current set of results
to the CSV file, creating it if it doesn’t already exist. This is useful for com-
bining more than one set of results, represented by more than one saved
results page:

$ perl groups2csv.pl < results_i.html > results.csv
$ perl groups2csv.pl < results_2.html >> results.csv

The Results

Scraping the results of a search for perl group:google.public.web-apis, any-
thing mentioning the Perl programming language on the Google APIs dis-
cussion forum, looks like:

$ perl groups2csv.pl < groups.html > groups.csv
"title","url","group","date","author", "number of articles"”

"Re: Perl Problem?",
"http://groups.google.com/groups?q=perl+group:google.public.
web-apis&hl=en&lr=4ie=UTF-8&output=search&selm=5533bb12.0208230215.
365a093d%40po sting.google.comérnum=1",
"google.public.web-apis","Aug. 23, 2002","S Anand","2"

"Proxy usage from Perl script”,
"http://groups.google.com/groups?q=perl+group:goo
gle.public.web-apis&hl=en&lr=8ie=UTF-88output=search&selm=575db61f.
0206290446.1d fedea7%40posting.google.combirnum=2",
"google.public.web-apis”,"Jun, 29, 2002","Varun","3"

"The Coogle Velocity",
"http://groups.google.com/groups?q=perl+group:google.public.web-apis&hl
=en&lr=&ie=UTF-8output=searchéselm=18a1ac72.0204221336.47fdee71%
40posting.google.comérnum=29",

"google.public.web-apis","Apr. 22, 2002","John Graham-Cumming","2"

124 | Non-API Google Applications

Scraping Google News

ﬂ Scraping Google News
#47 Scrape Google News search results o get at the latest from thousands of
aggregated news sources.

Since Google added thousands of sources to its Google News [Hack #32] search
engine, it’s become an excellent source for any researcher. However, because
you can’t access Google News through the Google API, you’ll have to scrape
your results from the HTML of a Google News results page. This hack does
just that, gathering up results into a comma-delimited file suitable for load-
ing into a spreadsheet or database. For each news story, it extracts the title,
URL, source (i.e., news agency), publication date or age of the news item,
and an excerpted description.

Because Google’s Terms of Service prohibits the automated access of their
search engines except through the Google API, this hack does not actually
connect to Google. Instead, it works on a page of results that you’ve saved
from a Google News search you’ve run yourself. Simply save the results page
as HTML source using your browser’s File — Save As... command.

Make sure the results are listed by date instead of relevance. When results
are listed by relevance some of the descriptions are missing, because similar
stories are clumped together. You can sort results by date by choosing the
“Sort By Date” link on the results page or by adding &scoring=d to the end of
the results URL. Also make sure you're getting the maximum number of
results by adding &num=100 to the end of the results URL. For example,
Figure 4-2 shows results of a query for monk detective, hoping to find out
more about the new popular feel-good detective show, “Monk.”

The Code

#!/usr/bin/perl

news2csv.pl

Google News Results exported to CSV suitable for import into Excel
Usage: perl news2csv.pl < news.html > news.csv

print qq{"title","1link","source”,"date or age", "description"\n};

my %unescape = ('8lt;'=>'<", ">'=>">", ‘&'=>'&",
'"'=>""", ' '=>' ');

my $unescape_re = join "|" => keys %unescape;

my($results) = (join '", <>) =~ m!(.*?)Imis;

$results =~ s/($unescape_re)/$unescape{$1}/migs; # unescape HTML

$results =~ s![\n\r]! Imigs; # drop spurious newlines

while ($results =~ m!(.+2)(.+?) - (.+2)(.+2?)!migs) {
my($url, $title, $source, $date_age, $description) =
($a]]"",821]"",8311"",%4]|"", $5]1"");
$title =~ s!"1""lg; # double escape " marks

Non-AP| Google Applications | 125

Scraping Google News

$description =~ s!"|""lg;
my $output =

qq{"$t1tle“, "$url”,"$source"”,"$date_age","
$output =~ slllg; # drop all HTML tags
print $output;

$description"\n};

Search Tips
|monkdmcthm - || Goog

Sududnmﬁrmnltm (BETA) Results 1 - 49 of about 54. Search took 0.06 seconds.

Sort by relevance Sorted by date
ON TV : That Was Then is already
gone :
| Arkansas Democrat Gazette, AR - 12 hours ago
... The daffy detective series began life on cable's USA Network, where it does
well ... USA
will air the season finale,” Mr. Monk and the Airplane, “at 9 pm Friday ... |

;Miami' and WB shows are hot, UPN is not; and “Push, Nevada'
Pisdmonter, CA - 14 Oct 2002

| . Remember the note | had that “*Monk" — the

refreshingly quirky USA detective drama

repeated on ABC — would air Thursdays at B pm on ABC until Thanksgiving? ...

Saunders: Then' gets no second

Rocky Mountain News, CO - 14 Oct 2002
... Moving into the late Monday siot

will be Monk, starring Tony Shalhoub

as the obsessive-compulsive detective.
Also departing, after Oct. ...

2T 4

!M!Dﬂ'

Figure 4-2. Google News results for “monk detective”

Running the Script

Run the script from the command line, specifying the Google News results
HTML filename and name of the CSV file you wish to create or to which
you wish to append additional results. For example, using news.html as our
input and news.csv as our output:

$ perl news2csv.pl < news.html > news.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal.

126 | Non-API Google Applications

s
The Results

The following are some of the 54 results returned by a Google News search
for monk detective and using the HTML page of results shown in Figure 4-2:

“title","link","source","date or age", "description”

"ON TV : That Was Then is already gone",
"http://www.nwanews.com/adg/story_style.php?storyid=9127",

"Arkansas Democrat Gazette, AR",

"12 hours ago",

" ... The daffy detective series began life on cable<92>s USA Network,
where it does well ... USA will air the season finale,"" Mr. Monk ... "
"*Miami' and WB shows are hot; UPN is not; and “Push, Nevada' is, ... "
"http://www.bayarea.com/mld/bayarea/entertainment/television/...",
"Piedmonter, CA",

"14 Oct 2002",

" ... Remember the note I had that “~“Monk'' -- the refreshingly quirky
USA detective dramarepeated on ABC -- would air Thursdays ... "

"Indie Film Fest hits New Haven",
"http://www.yaledailynews.com/article.asp?AID=19740",

"Yale Daily News",

"20 Sep 2002,

" ... The Tower of Babble,"" directed by Beau Bauman '99, and
""Made-Up,"" which was directed by Tony Shalhoub DRA ‘80, who

also stars in the USA detective show ""Monk."". ... "

»

(Each listing actually occurs on its own line; lines are broken and occasion-
ally shortened for the purposes of publication.)

Hacking the Hack

Most of this program you want to leave alone. It’s been built to make sense
out of the Google News formatting. But if you don’t like the way the pro-
gram organizes the information that’s taken out of the results page, you can
change it. Just rearrange the variables on the following line, sorting them
any way you want them. Be sure to you keep a comma between each one.
my $output =
qq{"$title","$url","$source”,"$date_age","$description”\n};
For example, perhaps you want only the URL and title. The line should
read:
my $output =
qq{"$url","$title"\n};
That \n specifies a newline, and the $ characters specify that $url and $title
are variable names; keep them intact.

Of course, now your output won’t match the header at the top of the CSV
file, by default:

print qq{"title","link","source”,"date or age", "description"\n};

Non-API Google Applications | 127

. Scraping Google Catalogs

As before, simply change this to match, as follows:

print gq{"url","title"\n};

i WO Scraping Google Catalogs
#48 Scrape and save Google catalog search results to a comma-delimited file.
The December-Holiday-of-Your-Choice comes but once a year, but catalog

shopping is a year-round joy. And Google Catalogs [Hack #33] makes it easier
than ever.

Of course, just because you spend a rainy winter afternoon finding the per-
fect shawl for Aunt Prunella doesn’t mean that you’ll be able to replicate the
search when you need it. Or maybe you want to do a search for several
things and browse them at your leisure later.

Because Google Catalogs aren’t supported by the Google API, this hack
scrapes finds from the HTML of a Google Catalogs results page. It saves the
catalog title, date or season, page number, and even a link to an image of the
page itself at Google. Results are saved in CSV format, ready for import into
a database or spreadsheet application.

Because Google’s Terms of Service prohibits the automated access of their
search engines except through the Google API, this hack does not actually
connect to Google. Instead, it works on a page of results that you've saved
from a Google Catalogs search you’ve run yourself. Simply save the results
page as HTML source using your browser’s File — Save As... command.

As with the Google News hack [Hack #47], you can optimize the effectiveness
of this hack by changing the results URL ever so slightly to tweak the order
of and data displayed. By adding a &num=100 to the end of the catalog search
results URL, you’ll get up to 100 results instead of only the first.

For example, Figure 4-3 shows results of a query for the perfect shawl for
that aunt.

The Code

#!/usr/bin/perl

catalogs2csv.pl

Coogle Catalogs Results exported to CSV suitable for import into Excel
Usage: perl catalogs2csv.pl < catalogs.html > catalogs.csv

print qq{"title","link","date","page"\n};

my($results) = join '', <>;

128 | Non-API Google Applications

Scraping Google Catalogs

while ($results =~ m!<td>(.+?) (.+?) - Pa
ge (\w+#?) -.+? !migs)
{

my($title, $date, $page, Surl) = ($1|['",$2||"",$3]]|"",%4]|"");

$title =~ s1"1""lg; # double escape " marks

my $output = qq{"$title”,"$url","$date"”,"$page”\n};

$output =~ sl ! lg; # clean spaces

print $output;

Figure 4-3. Google Catalogs results for “perfect shawl”

Running the Script

Run the script from the command line, specifying the Google Catalogs results
HTML filename and name of the CSV file you wish to create or to which you
wish to append additional results. For example, using catalogs.html as our
input and catalogs.csv as our output:

$ perl catalogs2csv.pl < catalogs.html > catalogs.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal.

Non-API Google Applications | 129

Scraping the Google Phonebook

The Results

You (and your aunt) appear to be in luck; there’s an abundance of perfect
shawls to be found in the Google Catalogs:
"title","link","date","page"
"Isabella","http://catalogs.google.com/catalogs?num=100
8hl=endlr=8ie=UTF-88issue=13655&catpage=cover","Fall 2002","3"
"Sovietski Collection","http://catalogs.google.com/catalogs?num=100
8hl=en8lr=8ie=UTF-8&issue=9447&catpage=cover","Summer 2002","37"
"Rego","http://catalogs.google.com/catalogs?num=100&hl=en
81r=8ie=UTF-8&issue=124848catpage=cover","2002","21"
"Crazy Crow Trading Post","http://catalogs.google.com/catalogs?num=100
8hl=en&lr=&ie=UTF-8&issue=12346&catpage=cover”,"2002","39"
"Winter Silks - Sale","http://catalogs.google.com/catalogs?num=100
8hl=en&lr=8ie=UTF-8&issue=10002&catpage=cover","Summer 2002","11"

"o

"Previews","http://catalogs.google.com/catalogs?num=100
8hl=endlr=8&ie=UTF-8&issue=14468&catpage=cover","0Oct 2002","381"
(Each listing actually occurs on its own line; lines are broken and occasion-
ally shortened for the purposes of publication.)

Hacking the Hack

The output format may be altered to suit your fancy; see the Google News
Scraper [Hack #47] for details on hacking the hack.

Scraping the Google Phonebook
Create a comma-delimited file from a list of phone numbers returned by
Google.

Just because Google’s API doesn’t support the phonebook: [Hack #17] Syntax
doesn’t mean that you can’t make use of Google phonebook data.

This simple Perl script takes a page of Google phonebook: results and pro-
duces a comma-delimited text file suitable for import into Excel or your
average database application. The script doesn’t use the Google API,
though, because the API doesn’t yet support phonebook lookups. Instead,
you’ll need to run the search in your trusty web browser and save the results
to your computer’s hard drive as an HTML file. Point the script at the
HTML file and it’ll do it’s thing.

Which results should you save? You have two choices depending on which
syntax you're using:

130 | Non-API Google Applications

Scraping the Google Phonebook

* If you're using the phonebook: syntax, save the second page of results,
reached by clicking the “More business listings...” or “More residential
listings...” links on the initial results page.

* If you're using the bphonebook: or rphonebook: syntax, simply save the
first page of results. Depending on how many pages of results you have,
you might have to run the program several times.

Because this program is so simple, you might be tempted to plug this code
into a program that uses LWP::Simple to automatically grab result pages
from Google, automating the entire process. You should know that access-
ing Google with automated queries outside of the Google API is against their
Terms of Service.

The Code

#!/usr/bin/perl

phonebook2csv

Google Phonebook results in CSV suitable for import into Excel
Usage: perl phonebook2csv.pl < results.html > results.csv

CSV header
print qq{"name",“phone number”,"address"\n};

my @listings = split /<hr size=1>/, join "', <;

foreach (@listings[1..($#listings-1)]) {

s!\nllg; # drop spurious newlines

sl<.+7>!1g; # drop all HTML tags

s1"1""lg; # double escape " marks

print '"' . join('","", (split /\s+-\s+/)[0..2]) . "\"\n";
}

Running the Hack

Run the script from the command line, specifying the phonebook results
HTML filename and name of the CSV file you wish to create or to which
you wish to append additional results. For example, using results.html as
our input and results.csv as our output:

$ perl phonebook2csv.pl < results.html > results.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal:

$ perl phonebook2csv.pl < results.html > results.csv
“name", "phone number","address”

"John Doe","(555) 555-5555","Wandering, TX 98765"
"Jane Doe","(555) 555-5555","Horsing Around, MT 90909"

Non-API Google Applications | 131

Scraping the Google Phonebook

"John and Jane Doe","(555) 555-5555","Somewhere, CA 92929"

"John Q. Doe","(555) 555-5555","Freezing, NE 91919"

"Jane J. Doe","(555) 555-5555","1 Sunnyside Street, "Tanning, FL 90210""
"John Doe, Jr.","(555) 555-5555","Beverly Hills, CA 90210"

"John Doe","(555) 555-5555","1 Lost St., Yonkers, NY 91234"

"John Doe","(555) 555-5555","1 Doe Street, Doe, OR 99999"

"John Doe","(555) 555-5555","Beverly Hills, CA 90210"

Using a double >> before the CSV filename appends the current set of results
to the CSV file, creating it if it doesn’t already exist. This is useful for com-
bining more than one set of results, represented by more than one saved
results page:

$ perl phonebook2csv.pl < results_1.html > results.csv
$ perl phonebook2csv.pl < results_2.html »>> results.csv

132 | Non-API Google Applications

CHAPTER FIVE

Introducing the
Google Web API

Hacks #50-59

A first look at the Google API and how to sign up.

Why an API?

When search engines first appeared on the scene, they wereé more open to
being spidered, scraped, and aggregated. Sites like Excite and AltaVista didn’t
worry too much about the odd surfer using Perl to grab a slice of page, or
meta-search engines including their results in their aggregated search results.
Sure, egregious data suckers might get shut out, but the search engines
weren’t worried about sharing their information on a smaller scale.

Google never took that stance. Instead, they have regularly prohibited meta—
search engines from using their content without a license, and they try their
best to block unidentified web agents like Perl’s LWP::Simple module or
even wget on the command line. Google has further been known to block IP-
address ranges for running automated queries.

Google had every right to do this; after all, it is their search technology, data-
base, and computer power. Unfortunately, however, these policies meant
that casual researchers and Google nuts, like you and I, don’t have the abil-
ity to play their rich data set in any automated way.

In the Spring of 2002, Google changed all that with the release of the Goo-
gle Web API (http://api.google.com/). The Google Web API doesn’t allow
you to do every kind of search possible, for example, it doesn’t support the
phonebook: [Hack #17] syntax, but it does make the lion’s share of Google’s rich
and massive database available for developers to create their own interfaces
and use Google search results to their liking.

way for programmatic access to a particular resource or

API stands for “Application Programming Interface,” a door-
application, in this case, the Google index.

133

So how can you participate in all this Google API goodness?

You’ll have to register for a developer’s key, a login of sorts to the Google
API. Each key affords its owner 1,000 Google Web API queries per day, after
which you're out of luck until tomorrow. In fact, even if you don’t plan on
writing any applications, it’s still useful to have a key at your disposal. There
are various third-party applications built on the Google API that you may
wish to visit and try out; some of these ask that you use your own key and
alotted 1,000 queries.

Signing Up and Google’s Terms

Signing up for a Google Web API developer’s key is simple. First you'll have
to create a Google account, which at the moment is good only for the Goo-
gle Web APIs and Google Answers. Google promises more applications
associated with Google accounts in the future. The requirements are only a
valid email address and made-up password.

You will, of course, have to agree to Google’s Terms & Conditions (http://
www.google.com/apis/download.html) before you can to proceed. In broad
strokes, this says:

* Google exercises no editorial control over the sites that appear in its
index. The Google API might return some results you might find
offensive.

* The Google API may be used for personal use only. It may not be used
to sell a product or service, or to drive traffic to a site for the sake of
advertising sales.

* You can’t noodle with Google’s intellectual property marks that appear
within the APL

* Google does not accept any liability for the use of their API. This is a
beta program.

* You may indicate that the program you create uses the Google API, but
not if the application(s) “(1) tarnish, infringe, or dilute Google’s trade-
marks, (2) violate any applicable law, and (3) infringe any third party
rights.” Any other use of Google’s trademark or logo requires written
consent.

Once you've entered your email address, created a password, and agreed to
the Terms of Service, Google sends you an email message to confirm the
legitimacy of your email address. The message includes a link for final acti-
vation of the account. Click the link to activate your account and Google
will email you your very own license key.

134 | Introducing the Google Web API

You've signed in, you've generated a key, you’re all set! What now? If you
don’t intend to do any programming, just stop here. Put your key in a safe
place and keep it on hand to use with any cool third-party Google API-based
services you come across.

The Google Web APIs Developer’s Kit

If you are interested in doing some programming, download the Google
Web APIs Developer’s Kit (http://'www.google.com/apis/download. html).
While not strictly necessary to any Google API programming you might do,
the kit contains much that is useful:

* A cross-platform WSDL file (see below)

* A Java wrapper library abstracting away some of the SOAP plumbing

* Asample .NET application

* Documentation, including JavaDoc and SOAP XML samples

Simply click the download link, unzip the file, and take a look at the
README.txt file to get underway.

Using the Key in a Hack

Every time you send a request to the Google server in a program, you have
to send your key along with it. Google checks the key and determines if it’s
valid, and you’re still within your daily 1,000 query limit; if so, Google pro-
cesses the request.

All the programs in this book, regardless of language and platform, provide

a place to plug in your key. The key itself is just a string of random-looking
characters (e.g., 12BuCK13mYShOE/34KNOcK@t tH3DoOR).

A Perl hack usually includes a line like the following:

Your Google API developer's key
my $google key='insert key here';

The Java GoogleAPIDemo included in the Google Web APIs Developer’s Kit
is invoked on the command line like so:

% java -cp googleapi.jar com.google.soap.search.GoogleAPIDemo

insert_key _here search ostrich
In both cases, insert key here or insert key here should be substituted
with your own Google Web API key. For example, I'd plug my made-up key
into the Perl script as follows:

Introducing the Google Web AP | 135

Your Google API developer's key
my $google_key="12BuCK13mY5hOE/34KNOcK@ttH3DoOR " ;

What'’s WSDL?

Pronounced “whiz-dill,” WSDL stands for Web Services Description Lan-
guage, an XML format for describing web services. The most useful bit of
the Google Web APIs Developer’s Kit is GoogleSearch.wsdl, a WSDL file
describing the Google API’s available services, method names, and expected
arguments to your programming language of choice.

For the most part, it’s easiest simply to keep the GoogleSearch.wsdl file in
the same directory as the scripts you're writing. This is, in most cases,
assumed in the hacks in this book. If you prefer to keep it elsewhere, be sure
to alter the path in the script at hand. A Perl hack usually specifies the loca-
tion of the WSDL file like so:

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

I like to keep such files together in a library directory and so would make the
following adjustment to the above code snippet:

Location of the GoogleSearch WSDL file
my $google wdsl = "/home/me/1ib/GoogleSearch.wsdl";

Understanding the Google API Query

The core of a Google application is the query. Without the query, there’s no
Google data, and without that, you don’t have much of an application.
Because of its importance, it’s worth taking a little time to look into the
anatomy of a typical query.

Query Essentials

The command in a typical Perl-based Google API application that sends a
query to Google looks like:

my $results = $google_search ->
doGoogleSearch(
key, query, start, maxResults,
filter, restrict, safeSearch, Ir,
ie, oe

);

136 | Introducing the Google Web API

Usually the items within the parentheses are variables, numbers, or Boolean
values (true or false). In the example above, I've included the names of the
arguments themselves rather than sample values so you can see their defini-
tions here:

key
This is where you put your Google API developer’s key [Chapter 1. With-
out a key, the query won’t get very far.

query
This is your query, composed of keywords, phrases, and special syntaxes.
start
Also known as the offset, this integer value specifies at what result to
start counting when determining which 10 results to return. If this num-
ber were 16, the Google API would return results 16-25. If 300, results
300-309 (assuming, of course, that your query found that many
results). This is what’s known as a “zero-based index”; counting starts
at 0, not 1. The first result is result 0, and the 999th, 998. It’s a little
odd, admittedly, but you get used to it quickly—especially if you go on
to do much programming. Acceptable values are 0 to 999, because Goo-
gle only returns up to a thousand results for a query.

maxResults
This integer specifies the number of results you’d like the API to return.

The API returns results in batches of up to ten, so acceptable values are
1 through 10.

filter
You might think the filter option concerns the SafeSearch filter for adult
content. It doesn’t. This Boolean value (true or false) specifies whether
your results go through automatic query filtering, removing near-dupli-
cate content (titles and snippets are very similar) and multiple (more than
two) results from the same host or site. With filtering enabled, only the
first two results from each host are included in the result set.

restrict

No, restrict doesn’t have anything to do with SafeSearch either. It
allows for restricting your search to one of Google’s topical searches or
to a specific country. Google has four topic restricts: U.S. Government
(unclesam), Linux (linux), Macintosh (mac), and FreeBSD (bsd). You’ll
find the complete country list in the Google Web API documentation.
To leave your search unrestricted, leave this option blank (usually signi-
fied by empty quotation marks, "").

Introducing the Google Web APl | 137

safeSearch
Now here’s the SafeSearch filtering option. This Boolean (true or false)
specifies whether results returned will be filtered for questionable (read:
adult) content.

Ir
This stands for “language restrict” and it’s a bit tricky. Google has a list
of languages in its APl documentation to which you can restrict search
results, or you can simply leave this option blank and have no language
restrictions.

There are several ways you can restrict to language. First, you can sim-
ply include a language code. If you wanted to restrict results to English,
for example, you’d use lang_en. But you can also restrict results to more
than one language, separating each language code with a | (pipe), signi-
fying OR. lang_en|lang_de, then, constrains results to only those “in
English or German.”

You can omit languages from results by prepending them with a -
(minus sign). -lang_en returns all results but those in English.
ie

This stands for “input encoding,” allowing you to specify the character
encoding used in the query you're feeding the API. Google’s documen-
tation says, “Clients should encode all request data in UTF-8 and
should expect results to be in UTF-8.” In the first iteration of Google’s
API program, the Google API documenation offered a table of encoding
options (latini, cyrillic, etc.) but now everything is UTF-8. In fact,
requests for anything other than UTF-8 are summarily ignored.

oe
This stands for “output encoding.” As with input encoding, every-
thing’s UTF-8.

A Sample
Enough with the placeholders; what does an actual query look like?

Take for example a query that uses variables for the key and the query,
requests 10 results starting at result number 100 (actually the hundred-and-
first result), and specifies filtering and SafeSearch be turned on. That query
in Perl would look like this:

my $results = $google_search ->
doGoogleSearch(

$google_key, $query, 100, 10,
“true", "", "true", "",
"utfg8", "utfs"

);

138 | Introducing the Google Web API

Note that the key and query could just as easily have been passed along as
quote-delimited strings:

my $results = $google_search ->

doGoogleSearch(
"12BuCK13mYShOE/34KNOCK@ttH3DoOR", “"+paloentology +dentistry” , 100, 10,
|trueﬂ’ un, I‘true', Hﬂ,
"utfg", "utfs"
)i
While things appear a little more complex when you start fiddling with the

language and topic restrictions, the core query remains mostly unchanged;
only the values of the options change.

Intersecting Country, and Topic Restrictions

Sometimes you might want to restrict your results to a particular language in
a particular country, or a particular language, particular country, and partic-
ular topic. Now here’s where things start looking a little on the odd side.

Here are the rules:
* Omit something by prepending it with a - (minus sign).

* Separate restrictions with a . (period, or full stop)—spaces are not
allowed.

* Specify an OR relationship between two restrictions with a | (pipe).
* Group restrictions with parentheses.

Let’s say you want a query to return results in French, draw only from Cana-
dian sites, and focus only within the Linux topic. Your query would look
something like this:

my $results = $google_search ->
doGoogleSearch(
$google_key, $query, 100, 10,
"true", "linux.countryCA", "true", "lang_fr",
"utfg", "utfg"
)

For results from Canada or from France, you'd use:
"linux. (countryCA|countryFR)"

Or maybe you want results in French, yet from anywhere but France:
"linux. (-countryFR)"

Putting Query Elements to Use

You might use the different elements of the query as follows:

Introducing the Google Web APl | 139

Using SafeSearch

If you’re building a program that’s for family-friendly use, you’ll proba-
bly want to have SafeSearch turned on as a matter of course. But you
can also use it to compare safe and unsafe results. The “SafeSearch Cer-
tifying URLs” [Hack #81] hack does just that. You could create a program
that takes a word from a web form and checks its counts in filtered and
unfiltered searches, providing a “naughty rating” for the word based on
the counts.

Setting search result numbers

Whether you request 1 or 10 results, you're still using one of your devel-
oper key’s daily dose of a thousand Goole Web API queries. Wouldn’t it
then make sense to always request ten? Not necessarily; if you’re only
using the top result—to bounce the browser to another page, generate a
random query string for a password, or whatever—you might as well
add even the minutest amount of speed to your application by not
requesting results you’re just going to throw out or ignore.

Searching different topics
With four different specialty topics available for searching through the
Google API, dozens of different languages, and dozens of different coun-
tries, there are thousands of combinations of topic/language/country
restriction that you would work through.

Consider an “open source country” application. You could create a list
of keywords very specific to open source (like 1inux, perl, etc.) and cre-
ate a program that cycles through a series of queries that restricts your
search to an open source topic (like linux) and a particular country. So
you might discover that perl was mentioned in France in the linux topic
15 times, in Germany 20 times, etc.

You could also concentrate less on the program itself and more on an
interface to access these variables. How about a form with pull-down
menus that allowed you to restrict your searches by continent (instead
of country)? You could specify which continent in a variable that’s
passed to the query. Or how about an interface that lets the user specify
a topic and cycles through a list of countries and languages, pulling
result counts for each one?

Understanding the Google API Response

While the Google API grants you programmatic access to the lion’s share of
Google’s index, it doesn’t provide all the functionality available through the
Google.com web site’s search interface.

140 | Introducing the Google Web API

Can Do

The Google API, in addition to simple keyword queries, supports the follow-
ing special syntaxes [in “The Special Syntaxes” in Chapter 1]:

site:

daterange:

intitle:

inurl:

allintext:

allinlinks:

filetype:

info:

link:

related:

cache:

Can’t Do

The Google API does not support these special syntaxes:

phonebook:

rphonebook :

bphonebook :

stocks:
While queries of this sort provide no individual results, aggregate result data
is sometimes returned and can prove rather useful. kincount.cgi [Hack #70], one
of the hacks in this book, takes advantage of result counts returned for
phonebook: queries.

The 10-Result Limit

While searches through the standard Google.com home page can be tuned
[Hack #1] to return 10, 20, 30, 50, or 100 results per page, the Google Web API
limits the number to 10 per query. This doesn’t mean, mind you, that the
rest are not available to you, but it takes a wee bit of creative programming
entailing looping through results, 10 at a time [Hack #1].

What’s in the Results
The Google API provides both aggregate and per-result data in its result set.

Aggregate data. The aggregate data, information on the query itself and on
the kinds and number of results that query turned up, consists of:

<documentFiltering>
A Boolean (true/false) value specifying whether or not results were fil-
tered for very similar results or those that come from the same web host

Introducing the Google Web APl | 141

| Programming the Google Web API with Perl

<directoryCategories>
A list of directory categories, if any, associated with the query

Individual search result data. The “guts” of a search result—the URLs, page
titles, and snippets—are returned in a <resultElements> list. Each result
consists of the following elements:

<summary>
The Google Directory summary, if available
<URL>
The search result’s URL; consistently starts with http://

<snippet>
A brief excerpt of the page with query terms highlighted in bold (HTML
 tags)

<title>
The page title in HTML

<cachedSize>
The size in kilobytes (K) of the Google-cached version of the page, if
available

You'll notice the conspicuous absence of PageRank [Hack #95]. Google does
not make PageRank available through anything but the official Google Tool-
bar [Hack #24]. You can get a general idea of a page’s popularity by looking
over the “popularity bars” in the Google Directory.

i Programming the Google Web API with Perl
#50 A simple script illustrating the basics of programming the Google Web API
with Perl and laying the groundwork for the lion’s share of hacks to come.

The vast majority of hacks in this book are written in Perl. While the specif-
ics vary from hack to hack, much of the busy work of querying the Google
API and looping over the results remain essentially the same. This hack is
utterly basic, providing a foundation on which to build more complex and
interesting applications. If you haven’t done anything of the sort before, this
hack is a good starting point for experimentation. It simply submits a query
to Google and prints out the results.

The Code

#!/usr/local/bin/perl

googly.pl

A typical Google Web API Perl script
Usage: perl googly.pl <query>

142 | Introducing the Google Web API

Programming the Google Web APl with Perl

Your Google API developer's key
my $google key='insert key here';

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

use strict;

Use the SOAP::Lite Perl module
use SOAP::Lite;

Take the query from the command-line
my $query = shift @ARGV or die "Usage: perl googly.pl <query>\n";

Create a new SOAP::Lite instance, feeding it GoogleSearch.wsdl
my $google_search = SOAP::Lite->service("file:$google wdsl");

Query Google
my $results = $google_search ->
doGoogleSearch(
$google_key, $query, 0, 10, "false", "", "false",
"", "latin1", "latim1"

);

No results?
@{$results->{resultElements}} or exit;

Loop through the results
foreach my $result (@{$results->{resultElements}}) {
Print out the main bits of each result
print
join "\n",
$result->{title} || "no title",
$result->{URL},
$result->{snippet} || "no snippet’,
n\nu;
}

Running the Hack

Run this script from the command line, passing it your preferred query key-
words:

$ perl googly.pl "query keywords"

The Results

Here’s a sample run. The first attempt doesn’t specify a query and so trig-
gers a usage message and doesn’t go any further. The second searches for
learning perl and loops through the results.

Introducing the Google Web APl | 143

Looping Around the 10-Result Limit

% perl googly.pl

Usage: perl googly.pl <query>

% perl googly.pl "learning perl"

oreilly.com -- Online Catalog: Learning

Perl, 3rd Edition

http://www.oreilly.com/catalog/1lper13/

... learning perl, 3rd Edition Making Easy Things Easy and Hard Things
Possible By Randal L. Schwartz, Tom Phoenix 3rd Edition July

2001 0-596-00132-0

Amazon.com: buying info: learning perl (2nd Edition)
http://www.amazon.com/exec/obidos/ASIN/1565922840

... learning perl takes common programming idioms and expresses them
in "perlish”"
 terms. ... (learning perl,

Programming Perl, Perl Cookbook).

See Also

* Looping Around the 10-Result Limit [Hack #51]

ﬁ Looping Around the 10-Result Limit

If you want more than 10 results, you'll have to loop.

The Google API returns only 10 results per query. Ten results is plenty for
some queries, but for most applications, 10 results barely scratches the sur-
face. If you want more than 10 results, you’re going to have to loop, query-
ing for the next set of 10 each time. The first query returns the top ten. The
next, 11 through 20. And so forth.

This hack builds on the basic query shown in “Programming the Google
Web API with Perl” [Hack #50). To get at more than the top 10 results, no mat-
ter the programming language you're using, you’ll have to create a loop. The
example is in Perl, because that’s what most of the hacks in this book are
written in. Alterations to support looping are shown in bold.

The Code

#!/usr/local/bin/perl

looply.pl

A typical Google Web API Perl script
Usage: perl looply.pl <query>

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

144 | Introducing the Google Web API

Looping Around the 10-Result Limit

Number of times to loop, retrieving 10 results at a time
my $loops = 3; # 3 loops x 10 results per loop = top 30 results

use strict;

Use the SOAP::Lite Perl module
use SOAP::Lite;

Take the query from the command-line
my $query = shift @ARGV or die "Usage: perl looply.pl <query>\n";

Create a new SOAP::Lite instance, feeding it GoogleSearch.wsdl
my $google search = SOAP::Lite->service("file:$google wdsl");

Keep track of result number
my $number = 0;

for (my $offset = 0; $offset <= ($loops-1)*10; $offset += 10) {
Query Google
my $results = $google_search ->
doGoogleSearch(.
$google_key, $query, $offset, 10, "false", "", "false”,
"*, "latin1", "latin1"

¥

No sense continuing unless there are more results
last unless @{$results->{resultElements}};

Loop through the results
foreach my $result (@{$results->{'resultElements'}}) {

Print out the main bits of each result
print

join "\n",

++$number,

$result->{title} || "no title",
$result->{URL},

$result->{snippet} || 'no snippet’,
n\n-;

}
}

Notice that the script tells Google which set of 10 results it’s after by passing
an offset ($offset). The offset is increased by 10 each time ($offset += 10).
Running the Script

Run this script from the command line, passing it your preferred query:
$ perl looply.pl "query”

Introducing the Google Web API | 145

l

The SOAP::Lite Perl Module

The Results

% perl looply.pl

Usage: perl looply.pl <query>

% perl looply.pl "learning perl"
1

oreilly.com -- Online Catalog: Learning Perl, 3rd Edition
http://www.oreilly.com/catalog/lperl3/

.+« Learning Perl, 3rd Edition Making Easy Things

Easy and Hard Things Possible By Randal
 L. Schwartz, Tom Phoenix
3rd Edition July 2001 0-596-00132-0, Order Number ...

29

Intro to Perl for CGI
http://hotwired.lycos.com/webmonkey/98/47/index2a.html
... Some people feel that the benefits of learning
Perl scripting are few.
 But ... part. That's right.
Learning Perl is just like being a cop. ...

30

WebDeveloper.com ®: Where Web Developers and Designers Learn How ...
http://www.webdeveloper.com/reviews/book6 . html

... Registration CreditCard Processing Compare Prices.
Learning Perl. Learning
 Perl, 2nd Edition.
Publisher: 0'Reilly Author: Randal Schwartz ...

See Also
¢ Programming the Google Web API with Perl [Hack #50]

The SOAP::Lite Perl Module

Installing the SOAP::Lite Perl module, backbone of the vast majority of hacks
in this book.

SOAP::Lite (http://www.soaplite.com) is the defacto standard for interfacing
with SOAP-based web services from Perl. As such, it is used extensively
throughout this book; just about all the hacks in the Google Web API Appli-
cations [Chapter 6] section are written in Perl using SOAP::Lite.

SOAPing your ISP

It’s unfortunately not that common for internet service providers (ISPs) to
make SOAP::Lite available to their users. In many cases, ISPs are rather
restrictive in general about what modules they make available and scripts they
allow users to execute. Others are rather more accomodating and more than
willing to install Perl modules upon request. Before taking up your time and
brainpower installing SOAP::Lite yourself, check with your service provider.

146 | Introducing the Google Web API

The SOAP::Lite Perl Module

Installing SOAP::Lite

Probably the easiest way to install SOAP::Lite is via another Perl module,
CPAN, included with just about every modern Perl distribution. The CPAN
module automates the installation of Perl modules, fetching components
and any prerequisites from the Comprehensive Perl Archive Network (thus
the name, CPAN) and building the whole kit-and-kaboodle on the fly.

and, therefore, assumes you’re running as the root user. If
you have no more than regular user access, you’ll have to
install SOAP::Lite and its prerequisites by hand (see “Unix
installation by hand”).

\ CPAN installs modules into standard system-wide locations

Unix and Mac 0S X installation via CPAN. Assuming you have the CPAN mod-
ule, have root access, and are connected to the Internet, installation should
be no more complicated than:

% su

Password:

perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.52)

ReadLine support available (try ~“install Bundle::CPAN'')
cpan> install SOAP::Lite

Or, if you prefer one-liners:
% sudo perl -MCPAN -e ‘install SOAP::Lite’

In either case, go grab yourself a cup of coffee, meander the garden, read the
paper, and check back once in a while. Your terminal’s sure to be riddled
with incomprehensible gobbledegook that you can, for the most part, sum-
marily ignore. You may be asked a question or three; in most cases, simply
hitting return to accept the default answer will do the trick.

Unix installation by hand. If CPAN installation didn’t quite work as expected,
you can of course install SOAP::Lite by hand. Download the latest version
from SOAPLite.com (http://www.soaplite.com/), unpack, and build it like so:

% tar xvzf SOAP-Lite-latest.tar.gz
SOAP-Lite-0.55
SOAP-Lite-0.55/Changes

SOAP-Lite-0.55/t/37-mod_xmlrpc.t

SOAP-Lite-0.55/t/TEST.pl

% cd SOAP-Lite-0.55

% perl Makefile.PL

We are about to install SOAP::Lite and for your convenience will
provide you with list of modules and prerequisites, so you'll be able

Introducing the Google Web API | 147

The SOAP::Lite Perl Module

to choose only modules you need for your configuration.
XMLRPC::Lite, UDDI::Lite, and XML::Parser::Lite are included by default.
Installed transports can be used for both SOAP::Lite and XMLRPC::Lite.

Client HTTP support (SOAP::Transport::HTTP::Client) [yes]
Client HTTPS support (SOAP::Transport::HTTPS::Client... [no]
SSL support for TCP transport (SOAP::Transport::TCP) [no]

Compression support for HTTP transport (SOAP::Transport... [no]

Do you want to proceed with this configuration? [yes]

During "make test" phase we may run tests with several SOAP servers
that may take long and may fail due to server/connectivity problems.
Do you want to perform these tests in addition to core tests? [no]
Checking if your kit is complete...

Looks good

% make

mkdir blib

mkdir blib/1ib

% make test

PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
-1/System/Library/Perl/darwin -I/System/Library/Perl -e 'use

Test: :Harness qu(&runtests $verbose); $verbose=0; runtests @ARGV;'
t/01-core.t t/02-payload.t t/03-server.t t/04-attach.t t/05-customxml.t
t/06-modules.t t/07-xmlrpc_payload.t t/08-schema.t t/01-core...........
% su

Password:

make install

Installing /Library/Perl/XMLRPC/Lite.pm

Installing /Library/Perl/XMLRPC/Test.pm

If, during the perl Makefile.PL phase, you run into any warnings about
installing prerequisites, you’ll have to install each in turn before attempting

to install SOAP::Lite again. A typical prerequisite warning looks something
like this:

Checking if your kit is complete...

Looks good

Warning: prerequisite HTTP::Daemon failed to load: Can't locate
HTTP/Daemon.pm in @INC (@INC contains: /System/Library/Perl/darwin
/System/Library/Perl /Library/Perl/darwin /Library/Perl /Library/Perl
/Network/Library/Perl/darwin /Network/Library/Perl
/Network/Library/Perl .) at (eval 8) line 3.

If you've little more than user access to the system and still insist on install-
ing SOAP::Lite yourself, you’ll have to install it and all its prerequisites

148 | Introducing the Google Web API

The SOAP::Lite Perl Module

somewhere in your home directory. ~/lib, a lib directory in your home direc-
tory, is as good a place as any. Inform Perl of your preference like so:

% perl Makefile.PL LIB=/home/login/lib
Replace /home/login/lib with an appropriate path.

Windows installation via PPM. If you’re running Perl under Windows, chances
are its ActiveState’s ActivePerl (http://www.activestate.com/Products/
ActivePerl/). Thankfully, ActivePerl’s outfitted with a CPAN-like module
installation utility. The Programmer’s Package Manager (PPM, http://aspn.
activestate.com/ASPN/Downloads/ActivePerl/PPM/) grabs nicely packaged
module bundles from the ActiveState archive and drops them into place on
your Windows system with little need of help from you.

Simply launch PPM from inside a DOS terminal window and tell it to install
the SOAP::Lite bundle.

C:\>ppm

PPM interactive shell (2.1.6) - type "help' for available commands.

PPM> install SOAP::Lite
If you’re running a reasonably recent build, you're probably in for a pleas-
ant surprise:

C:\>ppm

PPM interactive shell (2.1.6) - type 'help’ for available commands.

PPM> install SOAP::Lite
Version 0.55 of "SOAP-Lite' is already installed.

SOAP::Lite Alternatives

Having trouble? Perhaps your ISP doesn’t deem SOAP::Lite worthy.
Attempts at installing it yourself have you pulling out your hair?

While SOAP::Lite is the preferred method for interfacing with the Google
Web API—and, indeed, web services in general. That said, it’d hardly be fair
of us to leave you high and dry, unable to tuck in to this comprehensive col-
lection of Google Hacks.

Never fear, there’s more hackery afoot. POXML [Hack #53], our home-brewed,
lightweight Perl module treats Google’s SOAP as plain old XML, using the
LWP::UserAgent module to make HTTP requests and XML::Simple to parse
the XML response. Going one step further, our NoXML [Hack #54] doesn’t
even require an XML parser (gasp!), doing all its work with regular expres-
sions. And then there’s XooMLe [Hack #36], a third-party service offering an
intermediary plain old XML interface to the Google Web API. Each of these
alternatives provides a drop-in replacement for SOAP::Lite with little more
than a two-line alteration to the hack.

Introducing the Google Web APl | 149

~ Plain Old XML, a SOAP::Lite Alternative

i e Plain Old XML, a SOAP::Lite Alternative

53 PoXML is a drop-in replacement, of sorts, for the SOAP::Lite-less.

PoXML is a bit of home-brewed hackery for those who don’t have the
SOAP::Lite [Hack #52] Per] module at their disposal. Perhaps you had more
than enough trouble installing it yourself.

Any Perl guru will insist that module installation is as simple
as can be. That said, any other Perl guru will be forced to
admit that it’s an inconsistent experience and often harder
than it should be.

PoXML is a drop-in replacement—to a rather decent degree—for SOAP::
Lite. It treats Google’s SOAP as plain old XML, using the LWP::UserAgent
module to make HTTP requests and XML::Simple to parse the XML
response. And best of all, it requires little more than a two-line alteration to
the target hack.

The Code

The heart of this hack is PoXML.pm, a little Perl module best saved into the
same directory as your hacks.

PoXML.pm
PoXML [pronounced "plain old xml"] is a dire-need drop-in
replacement for SOAP::Lite designed for Google Web API hacking.

package PoXML;

use strict;
no strict "refs";

LWP for making HTTP requests, XML for parsing Google SOAP
use LWP::UserAgent;
use XML::Simple;

Create a new PoXML
sub new {
my $self = {};
bless($self);
return $self;

}

Replacement for the SOAP::Lite-based doGoogleSearch method
sub doGoogleSearch {
my($self, %args);
($self, @args{qw/ key q start maxResults filter restrict
safeSearch 1r ie oe /}) = @_;

150 | Introducing the Google Web API

Plain Old XML, a SOAP::Lite Alternative

grab SOAP request from _ DATA _

my $tell = tell(DATA);

my $soap_request = join '', ;

seek(DATA, $tell, 0);
$soap_tequest =~ s/\$(\w+)/$args{$1}/ge; #interpolate variables

Make (POST) a SOAP-based request to Google
my $ua = LWP::UserAgent->new;
my $req = HTTP::Request->new(

POST => 'http://api.google.com/search/beta2");
$reg->content_type('text/xml');
$req->content($soap_request);
my $res = $ua->request($req);
my $soap_response = $res->as_string;

Drop the HTTP headers and so forth until the initial xml element
$soap_response =~ s/*.+2(<\?xml)/$1/migs;

Drop element namespaces for tolerance of future prefix changes
$soap_response =~ s!(<\/?)[\w-]+2:([\w-]+2)!81%2!g;

Parse the XML
my $results = XMLin($soap_response);

Normalize and drop the unnecessary encoding bits
my $return = $results->{'Body"}->{"doGoogleSearchResponse’}->{return};
foreach (keys #{$return}) {
$return->{$_}->{content} and
$return->{$_} = $return->{$_}->{content} || '';
}

my @items;
foreach my $item (@{$return->{resultElements}->{item}}) {
foreach my $key (keys %$item) {
$item->{$key} = $item->{$key}->{content} || *';

push @items, $item;

}

$return->{resultElements} = \@items;

my @categories;

foreach my $key (keys %{$return->{directoryCategories}->{item}}) {
$return->{directoryCategories}->{$key} =
$return->{directoryCategories}->{item}->{$key}->{content} || '";

}

Return nice, clean, usable results
return $return;

}

1;

Introducing the Google Web APl | 151

Plain Old XML, a SOAP::Lite Alternative

This is the SOAP message template sent to api.google.com. Variables
signified with $variablename are replaced by the values of their
counterparts sent to the doGoogleSearch subroutine.

__DATA__
<?xml version='1.0" encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance”
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema" >
<SOAP-ENV:Body>
<ns1:doGoogleSearch xmlns:nsi="urn:GoogleSearch"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<key xsi:type="xsd:string">$key</key>
<q xsi:type="xsd:string">$q</q>
<start xsi:type="xsd:int">$start</start>
<maxResults xsi:type="xsd:int">$maxResults</maxResults>
<filter xsi:type="xsd:boolean">$filter</filter>
<restrict xsi:type="xsd:string">$restrict</restrict>
<safeSearch xsi:type="xsd:boolean">$safeSearch</safeSearch>
<lr xsi:type="xsd:string">$1lr</l1r>
<ie xsi:type="xsd:string">$ie</ie>
<oe xsi:type="xsd:string">$oe</oe>
</ns1:doGoogleSearch>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here’s a little script to show PoXML in action. Its no different, really, from
any number of hacks in this book. The only minor alterations necessary to
make use of PoOXML instead of SOAP::Lite are highlighted in bold.

#!/usxr/bin/perl

poxml_google2csv.pl

Google Web Search Results via PoXML (“plain old xml") module
exported to CSV suitable for import into Excel

Usage: poxml_google2csv.pl "{query}" [> results.csv]

Your Google API developer's key
my $google_key = 'insert key here’;

use strict;

use SOAP::Lite;
use PoXML;

$ARGV[0]
or die qq{usage: perl noxml_search2csv.pl “{query}"\n};

my $google_search = SOAP::Lite->service("file:$google_wdsl");
my $google_search = new PoXML;

my $results = $google_search -»>
doGoogleSearch(
$google_key, shift @ARGV, 0, 10, "false",

152 | Introducing the Google Web API

Plain Old XML, a SOAP:Lite Alternative | #

"*, "false", "", "latim1”, "latin1”

);
@{$results->{'resultElements'}} or die('No results');
print gq{"title","url","snippet™\n};

foreach (@{$results->{'resultElements’}}) {
$_->{title} =~ s!"1""lg; # double escape " marks
$_->{snippet} =~ s!"1""lg;
my $output = qq{"$_->{title}","$_->{URL}","$_->{snippet}"\n};
$output =~ sl<.+?>!lg; # drop all HTML tags
print $output;

}

Running the Hack

Run the script from the command line, providing a query on the command
line and piping the output to a CSV file you wish to create or to which you
wish to append additional results. For example, using "plain old xm1" as our
query and results.csv as our output:

$ perl poxml_google2csv.pl "plain old xml" > results.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal.

The Results

% perl poxml_google2csv.pl "plain old xml"
“title","url","snippet”

"XML.com: Distributed XML [Sep. 06, 2000]",
"http://www.xml.com/pub/2000/09/06/distributed.html",

" ... extensible. Unlike plain old XML, there's no sense of
constraining what the document can describe by a DTD or schema.
This means ... "

"Plain 0ld Documentation”,
"http://axkit.org/wiki/view/AxKit/Plain0OldDocumentation”,

" ... perlpodspec - Plain 0ld Documentation: format specification
and notes. ... Examples: =pod This is a plain Pod paragraph. ...
encodings in Pod parsing would be as in XML ... "

Applicability and Limitations

In the same manner, you can adapt just about any SOAP::Lite-based hack in
this book and those you’ve made up yourself to use PoXML.

1. Place PoOXML.pm in the same directory as the hack at hand.
2. Replace use SOAP::Lite; with use PoXML;.

Introducing the Google Web APl | 153

NoXML, Another SOAP::Lite Alternative

3. Replace my $google search = SOAP::Lite->service("file:$google_
wds1"); with my $google search = new PoXML;.

There are, however, some limitations. While PoXML works nicely to extract
results and aggregate results the likes of <estimatedTotalResultsCount />, it
falls down on gleaning some of the more advanced result elements like
<directoryCategories />, an array of categories turned up by the query.

In general, bear in mind that your mileage may vary, and don’t be afraid to
tweak.

See Also

* NoXML [Hack #54], a regular expressions—based, XML Parser—free SOAP::
Lite alternative

* XooMLE [Hack #36], a third-party service offering an intermediary plain
old XML interface to the Google Web API

E NoXML, Another SOAP::Lite Alternative

NoXML is a regular expressions—based, XML Parser—free drop-in alternative
to SOAP::Lite.

XML jockeys might well want to avert their eyes for this one. What is herein
suggested is something just so preposterous that it just might prove useful—
and indeed it does. NoXML is a drop-in alternative to SOAP::Lite. As its
name suggests, this home-brewed module doesn’t make use of an XML
parser of any kind, relying instead on some dead-simple regular expressions
and other bits of programmatic magic.

If you have only a basic Perl installation at your disposal and are lacking
both the SOAP::Lite [Hack #52] and XML::Parser Perl modules, NoXML will
do in a pinch, playing nicely with just about every Perl hack in this book.

As any XML guru will attest, there’s simply no substitute for
an honest-to-goodness XML parser. And they’d be right.
There are encoding and hierarchy issues that a regular
expression—based parser simply can’t fathom. NoXML is

simplistic at best. That said, it does what needs doing, the
very essence of “hacking.”

Best of all, NoXML can fill in for SOAP::Lite with little more than a two-line
alteration to the target hack.

154 | Introducing the Google Web API

NoXML, Another SOAP::Lite Alternative

The Code

The heart of this hack is NoXML.pm, which should be saved into the same
directory as your hacks themselves.

NoXML.pm
NoXML [pronounced "no xml"] is a dire-need drop-in
replacement for SOAP::Lite designed for Google Web API hacking.

package NoXML;

use strict;
no strict "refs”;

LWP for making HTTP requests, XML for parsing Google SOAP
use LWP::UserAgent;
use XML::Simple;

Create a new NoXML
sub new {
my $self = {};
bless($self);
return $self;

}

Replacement for the SOAP::Lite-based doGoogleSearch method
sub doGoogleSearch {
my($self, %args);
($self, @args{qw/ key q start maxResults filter restrict
safeSearch 1r ie oe /}) = @_;

grab SOAP request from _ DATA__

my $tell = tell(DATA);

my $soap_request = join "', ;

seek(DATA, $tell, 0);

$soap_request =~ s/\$(\w+)/$args{$1}/ge; #interpolate variables

Make (POST) a SOAP-based request to Google

my $ua = LWP::UserAgent->new;

my $req = HTTP::Request->new(POST => ‘http://api.google.com/search/
beta2');

$req->content_type('text/xml");

$req->content($soap_request);

my $res = $ua->request($req);

my $soap_response = $res->as_string;

Drop the HTTP headers and so forth until the initial xml element
$soap_response =~ s/*.+?(<\?xml)/$1/migs;

Drop element namespaces for tolerance of future prefix changes
$soap_response =~ s!(<\/?)[\w-]+2:([\w-]+2)!81%21g;

Set up a return dataset
my $return;

Introducing the Google Web API | 155

NoXML, Another SOAP::Lite Alternative

Unescape escaped HTML in the resultset
rny%uneSCape= (I(l=>l<l’ l)i=)i)l’ ‘&l=>'&l, IIII=>III|" ‘'lz>llll);
my $unescape_re = join '|' => keys %unescape;

Divide the SOAP response into the results and other metadata

my($before, $results, $after) = $soap_response =~
mit(*+) (L +2) (+$)#migs ;

my $before_and_after = $before . $after;

Glean as much metadata as possible (while being somewhat lazy ;-)
while ($before_and_after =~ m#(["<]*?)<#migs) {

$return->{$1} = $3; # pack the metadata into the return dataset
}

Glean the results
my @results;
while ($results =~ m#(.+?)#migs) {
my $item = $1;
my $pairs = {};
while ($item =~ m#([*<]*)#migs) {
my($element, $value) = (%1, $2);
$value =~ s/($unescape_re)/$unescape{$1}/g;
$pairs->{$element} = $value;
1
push @results, $pairs;

}

Pack the results into the return dataset
$return->{resultElements} = \@results;

Return nice, clean, usable results
return $return;

}
1

This is the SOAP message template sent to api.google.com. Variables
signified with $variablename are replaced by the values of their
counterparts sent to the doGoogleSearch subroutine.

__DATA__
<?xml version="1.0" encoding='UTF-8'?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance”
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema" >
<SOAP-ENV:Body>
<ns1:doGoogleSearch xmlns:nsi="urn:GoogleSearch"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<key xsi:type="xsd:string">$key</key>
<q xsi:type="xsd:string">$q</q>
<start xsi:type="xsd:int">$start</start>
<maxResults xsi:type="xsd:int">$maxResults</maxResults>

156 | Introducing the Google Web API

NoXML, Another SOAP::Lite Alternative

<filter xsi:type="xsd:boolean™>$filter</filter>
<restrict xsi:type="xsd:string">$restrict</restrict>
<safeSearch xsi:type="xsd:boolean">$safeSearch</safeSearch>
<1r xsi:type="xsd:string">$lr</1r>
<ie xsi:type="xsd:string">$ie</ie>
<oe xsi:type="xsd:string">$oe</oe>
</ns1:doGoogleSearch>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here’s a little script to show NoXML in action. It’s no different, really, from
any number of hacks in this book. The only minor alterations necessary to
make use of NoXML instead of SOAP::Lite are highlighted in bold.

#!/usr/bin/perl

noxml_google2csv.pl

Google Web Search Results via NoXML (“no xml") module
exported to CSV suitable for import into Excel

Usage: noxml_google2csv.pl "{query}" [> results.csv]

Your Google API developer's key
my $google_key="insert key here';

use strict;

use SOAP::Lite;
use NoXML;

$ARGV[0]
or die gq{usage: perl noxml_search2csv.pl "{query}"\n};

my $google_search = SOAP::Lite->service("file:$google_wdsl");
my $google_search = new NoXML;

my $results = $google_search ->
doGoogleSearch(
$google_key, shift @ARGV, 0, 10, "false”,
“*, "false", "", "latim1", "latin1”
);
@{$results->{"'resultElements'}} or die('No results');

print qq{"title","url","snippet™\n};

foreach (@{$results->{'resultElements’'}}) {
$_->{title} =~ s!"1""lg; # double escape " marks
$_->{snippet} =~ sI™1""Ig;
my $output = qq{"$_->{title}","$_->{URL}","$_->{snippet}"\n};
$output =~ sl<.+?>!1g; # drop all HTML tags
print $output;

}

Introducing the Google Web APl | 157

| NoXML, Another SOAP::Lite Alternative

Running the Hack

Run the script from the command line, providing a query on the command
line and piping the output to a CSV file you wish to create or to which you
wish to append additional results. For example, using "no xml" as our query
and results.csv as your output:

$ perl noxml_google2csv.pl "no xml" > results.csv

Leaving off the > and CSV filename sends the results to the screen for your
perusal.

The Results

% perl noxml_google2csv.pl "no xml"

"title","url","snippet"”

"site-comments@w3.org from January 2002: No XML specifications”,
"http://1ists.w3.org/Archives/Public/site-comments/2002Jan/0015.html",
"No XML specifications. From: Prof. ... Next message: Ian B. Jacobs:
8quot;Re: No XML specifications"; Previous message: Rob Cummings:
8quot;Website design..."; ... "

"Re: [xml] XPath with no XML Doc",
"http://mail.gnome.org/archives/xml/2002-March/msg00194.html",

" ... Re: [xml] XPath with no XML Doc. From: "Richard Jinkséquot;
<cyberthymia yahoo co uk>; To: <xml gnome oxg»; Subject:

Re: [xml] XPath with no XML Doc; ... "

Applicability and Limitations

In the same manner, you can adapt just about any SOAP::Lite-based hack in
this book and those you've made up yourself to use NoXML.

1. Place NoXML.pm in the same directory as the hack at hand.
2. Replace use SOAP::Lite; with use NoXML;.

3. Replace my $google search = SOAP::Lite->service("file:$google
wdsl"); with my $google search = new NoXML;.

There are, however, some limitations. While NoXML works nicely to
extract results and aggregate results the likes of
<estimatedTotalResultsCount />, it falls down on gleaning some of the more
advanced result elements like <directoryCategories />, an array of catego-
ries turned up by the query.

In general, bear in mind that your mileage may vary and don’t be afraid to
tweak.

158 | Introducing the Google Web API

455

Programming the Google Web API with PHP ‘

See Also
* PoXML [Hack #53], a plain old XML alternative to SOAP::Lite

* XooMLE [Hack #36], a third-party service offering an intermediary plain
old XML interface to the Google Web API

Programming the Google Web API with PHP

A simple example of programming the Google Web API with PHP and the
NuSOAP module.

PHP (http://www.php.net/), a recursive acronym for “PHP Hypertext Pro-
cessing,” has seen wide use as the HTML-embedded scripting language for
web development. Add to that the NuSOAP PHP module for creating and
consuming SOAP-based web services (http://dietrich.ganx4.com/nusoap) and
you've a powerful combination.

This hack illustrates basic use of PHP and NuSOAP in concert to interact
with the Google Web API.

The Code

<l--

googly.php

A typical Google Web API php script
Usage: googly.php?query=<query>
-=>

<html>

<head>

<title>googly.php</title>
</head>

<body>

<?
Use the NuSOAP php library
require_once('nusoap.php');

Set parameters

$parameters = array(
'key'=>"insert key here’,
'q' => $HTTP_GET VARS['query'],
‘start’ =>» '0°,
'maxResults’ => '10°,
‘filter' => 'false’,
‘restrict' = '',
'safeSearch' => 'false',
Ir' = "',
‘ie' =» 'latin’,

oe' => 'latin'

)s

Introducing the Google Web API | 159

Programming the Google Web APl with PHP

Create a new SOAP client, feeding it GoogleSearch.wsdl on Google's site
$soapclient = new soapclient('http://api.google.com/GoogleSearch.wsdl',
‘wsdl');

query Coogle
$results = $soapclient->call(doGoogleSearch',$parameters);

Results?
if (is_array($results['resultElements'])) {
print "<p>Your Google query for '" . $HTTP_GET_VARS['query'] . "' found "
. $results['estimatedTotalResultsCount'] . " results, the top ten of which
are:</p>";
foreach ($results['resultElements'] as $result) {
print
"¢p>" .
($result['title'] ? $result['title'] : 'no title') .
"¢</ax
" . $result['URL'] . “"
" .
($result['snippet'] ? $result['snippet'] : 'no snippet') .
"</p>";
}
}

No Results
else {

print "Your Google query for '" . $HTTP_GET VARS['query'] . "' returned no
Tesults”;

}

>
</body>
</html>

Running the Hack

Invoke this hack from your browser in the same manner you would a CGI
script. It accepts one named argument, query with your preferred Google
search:

http://localhost/googly.php?query=your google query

The Results
A search for php looks something like Figure 5-1.

160 | Introducing the Google Web API

1456

Programming the Google Web API with Java

ﬁ i E i anaﬂbg_wmmmm; — 5l

mwww Location Sidebar

Your Google query for ‘php' found 173000000 results, the top ten of which are:

e
submit website bugs in the bug PHP Search Bars available
for major browsers. ... CHM. 10th Release of the Mamual CHM Edition. ...

- version of PHP. Complete Source Code. ... Older Versions of PHP. Older releases
are listed for archaeological purposes only. They are no longer supported. ...

:’.

Community ane]. Amazon. PHP-Nuke 6.5 Pre 3 Released New PHP-Nuke
mssmmammm&m b

Figure 5-1. PHP results page

Programming the Google Web API with Java
Programming the Google Web API in Java is a snap, thanks to all the
functionality packed into the Google Web API Developer’s Kit.

Thanks to the Java Archive (JAR) file included in the Google Web API
Developer’s Kit [in “The Google Web APIs Developer's Kit”], programming to the Google
API in Java couldn’t be simpler. The googleapi.jar archive includes com.
google.soap.search, a nice clean wrapper around the underlying Google
SOAP, along with the Apache Software Foundation’s open source Crimson
(http://xml.apache.org/crimson) XML parser and Apache SOAP (http://xml.
apache.org/soap/) stack, among others.

You'll need a copy of the Java 2 Platform, Standard Edition
(J2SE, http:/fjava.sun.com/downloads/) to compile and run
this hack.

Introducing the Google Web APl | 161

Programming the Google Web API with Java

The Code

// Googly.java
// Bring in the Google SOAP wrapper
import com.google.soap.search.*;
import java.io.*;
public class Googly {
// Your Google API developer's key
private static String googleKey = "insert key here";
public static void main(String[] args) {
// Make sure there's a Google query on the command-line
if (args.length != 1) {
System.err.println("Usage: java [-classpath classpath] Googly <query>
")
System.exit(1);

// Create a new GoogleSearch object
GoogleSearch s = new GoogleSearch();

try {

s.setKey(googleKey);

s.setQueryString(axgs[0]); // Google query from the command-line
s.setMaxResults(10);

// Query Google

GoogleSearchResult r = s.doSearch();

// Gather the results

GoogleSearchResultElement[] re = r.getResultElements();

// Output
for (int i = 0; i < re.length; i++) {

System.out.println(re[i].getTitle());

System.out.println(re[i].getURL());

System.out.println(re[i].getSnippet() + "\n");
}

// Anything go wrong?
} catch (GoogleSearchFault f) {
System.out.println("GoogleSearchFault: " + f.toString());

}
}

}

Be sure to drop in your own Google developer’s key [in “Using the Key in a Hack”]
(e.g., 12BuCK13mYShOE/34KNOcK@ttH3DoOR) in place of "insert key here":

// Your Google API developer's key
private static String googleKey = "12BuCK13mY5hOE/34KNOcK@ttH3DoOR";

Compiling the Code

To successfully compile the Googly application, you’'ll need that googleapi.
jar archive. I chose to keep it in the same directory as as my Googly.java

162 | Introducing the Google Web API

Programming the Google Web API with Python

source file; if you've put it elsewhere, adjust the path after -classpath
accordingly.

% javac -classpath googleapi.jar Googly.java
This should leave you with a brand new Googly.class file, ready to run.

Running the Hack
Run Googly on the command line, passing it your Google query, like so:
% java -classpath .:googleapi.jar Googly "query words"

The Results

% java -classpath .:googleapi.jar Googly "Learning Java"
oreilly.com -- Online Catalog: Learning Java
http://www.oreilly.com/catalog/learnjava/

For programmers either just migrating to Java or already working
steadily in the forefront of Java development, Learning Java gives
a clear, systematic

oreilly.com -- Online Catalog: Learning Java , 2nd Edition
http://www.oreilly.com/catalog/learnjava2/

This new edition of Learning Java has been expanded and updated for
Java 2 Standard Edition SDK 1.4. It comprehensively addresses ...

Java Programming...From the Grounds Up / Web Developer
http://www.webdeveloper.com/java/java_programming_grounds_up.html
... WebDeveloper.com. Java Programming... From the Grounds Up. by
Mark C. Reynolds ... Java Classes and Methods. Java utilizes the
basic object technology found in C++. ...

i s Programming the Google Web APl with Python

57 Programming the Google Web API with Python is simple and clean, as these
scripts and interactive examples demonstrate.

Programming to the Google Web API from Python is a piece of cake, thanks
to Mark Pilgrim’s PyGoogle wrapper module (http://diveintomark.org/
projects/pygoogle/). PyGoogle abstracts away much of the underlying SOAP,
XML, and request/response layers, leaving you free to spend your time with
the data itself.

PyGoogle Installation

Download a copy of PyGoogle and follow the installation instructions (http:/
/diveintomark.org/projects/pygoogle/readme.txt). Assuming all goes to plan,
this should be nothing more complex than:

% python setup.py install

Introducing the Google Web API | 163

Programming the Google Web AP with Python

Alternately, if you want to give this a whirl without installing PyGoogle or
don’t have permissions to install it globally on your system, simply put the
included SOAP.py and google.py files into the same directory as the googly.py
script itself.

The Code

#!/usr/bin/python

googly.py

A typical Google Web API Python script using Mark Pilgrim's
PyGoogle Google Web API wrapper

[http://diveintomark.org/projects/pygoogle/]

Usage: python googly.py <query>

import sys, string, codecs

Use the PyGoogle module
import google

Grab the query from the command-line
if sys.argv[1:]:
query = sys.argv[1]
else:
sys.exit('Usage: python googly.py <query>')

Your Google API developer's key
google.LICENSE_KEY = 'insert key here'

Query Google
data = google.doGoogleSearch(query)

Teach standard output to deal with utf-8 encoding in the results
sys.stdout = codecs.lookup('utf-8')[-1](sys.stdout)

Output
for result in data.results:
print string.join((result.title, result.URL, result.snippet), "\n"), "\n"

Running the Hack
Invoke the script on the command line as follows:

% python googly.py "query words"

The Results

% python googly.py "learning python"

oreilly.com -- Online Catalog: Learning

Python

http://www.oreilly.com/catalog/1lpython/

Learning Python is an

introduction to the increasingly popular interpreted programming

164 | Introducing the Google Web API

Programming the Google Web API with Python

language that's portable, powerful, and remarkably easy to use in both
...

Book Review: Learning Python
http://www2.linuxjournal.com/1j-issues/issue66/3541.html

... Issue 66: Book Review: Learning

Python ... Enter

Learning Python. My executive summary

is that this is the right book for me and probably for many others

as well. ...

Hacking the Hack

Python has a marvelous interface for working interactively with the inter-
preter. It’s a good place to experiment with modules such as PyGoogle, que-
rying the Google API on the fly and digging through the data structures it
returns.

Here’s a sample interactive PyGoogle session demonstrating use of the
doGoogleSearch, doGetCachedPage, and doSpellingSuggestion functions.

% python

Python 2.2 (#1, 07/14/02, 23:25:09)

[GCC Apple cpp-precomp 6.14] on darwin

Type "help", “"copyright", "credits” or "license” for more information.
>>> import google

>>> google.LICENSE_KEY = "insert key here’

»>> data = google.doGoogleSearch("Learning Python")

>>> dir(data.meta)

['__doc__', ' _init__*, '__module__', 'directoryCategories',
‘documentFiltering', "endIndex', 'estimateIsExact’,
‘estimatedTotalResultsCount’, 'searchComments’, 'searchQuery’,
‘searchTime’, ‘searchTips', 'startIndex']

>>> data.meta.estimatedTotalResultsCount

115000
>>> data.meta.directoryCategories
[{u'specialEncoding’: '', u'fullViewableName': "Top/Business/Industries/

Publishing/Publishers/Nonfiction/Business/0'Reilly and_Associates/
Technical_Books/Python"}]

»»> dir(data.results[5])

["URL*, *__doc__', '__init__", '__module__', 'cachedSize',
‘directoryCategory", 'directoryTitle', "hostName',
'relatedInformationPresent’, 'snippet', 'summary', 'title']

»>»> data.results[o].title

‘oreilly.com -- Online Catalog: Learning Python'

»>»> data.results[0].URL

‘http://www.oreilly.com/catalog/lpython/’

>>> google.doGetCachedPage(data.results[0].URL)

'<meta http-equiv="Content-Type" content="text/html; charset=I50-8859-1">\n
<BASE HREF="http://www.oreilly.com/catalog/lpython/"><table border=1

>>> google.doSpellingSuggestion(‘lurn piethon')

*learn python'

Introducing the Google Web AP1 | 165

. Programming the Google Web APl with C# and .NET

K

ped Programming the Google Web API
VEES] with Gf and NET

with C# and .NET

Create GUI and console Google search applications with C# and the .NET
framework.

The Google Web APIs Developer’s Kit [in “The Google Web APIs Developer’s Kit"]
includes a sample C# Visual Studio .NET (http://msdn.microsoft.com/
vstudio/) project for a simple GUI Google search application (take a look in
the dotnet/CSharp folder). The functional bits you’d probably find most
interesting are in the Form1.cs code.

This hack provides basic code for a simple console Google search applica-
tion similar in function (and, in the case of Java [Hack #56], form, too) to those
in Perl Hack #50], Python [Hack #57], et al.

' Compiling and running this hack requires that you have the
.NET Framework (http://msdn.microsoft.com/library/default.
asp?url=/nhp/default.asp?contentid=28000519) installed.

The Code

/1 googly.cs
// A Google Web API C# console application
// Usage: googly.exe <query>
// Copyright (c) 2002, Chris Sells.
// No warranties extended. Use at your own risk.
using System;
class Googly {
static void Main(string[] args) {
// Your Google API developer's key
string googleKey = "insert key here";
// Take the query from the command-line
if(args.length != 1) {
Console.Writeline("Usage: google.exe <query>");
return;
}
string query = args[0];
// Create a Google SOAP client proxy, generated by:
/1 ¢:\> wsdl.exe http://api.google.com/GoogleSearch.wsdl
GoogleSearchService googleSearch = new GoogleSearchService();
// Query Google
GoogleSearchResult results = googleSearch.doGoogleSearch(googleKey,
query, 0, 10, false, "", false, "", "latin1", "latin1");
// No results?
if(results.resultElements == null) return;
// Loop through results
foreach(ResultElement result in results.resultElements) {
Console.WriteLine();

166 | Introducing the Google Web API

Programming the Google Web API with C# and .NET

Console.WriteLine(result.title);
Console.WritelLine(result.URL);
Console.WritelLine(result.snippet);
Console.WriteLine();

}
}
}
Remember to insert your Google developer’s key [in “sing the Key in a Hack”] (e.g.,
12BuCK13mYShOE/34KNOcK@ttH3DoOR) in place of "insert key here":

// Your Google API developer's key
string googleKey = "12BuCK13mYShOE/34KNOCK@ttH3DoOR";

Compiling the Code

Before compiling the C# code itself, you must create a Google SOAP client
proxy. The proxy is a wodge of code custom built to the specifications of the
GoogleSearch.wsdl file, an XML-based description of the Google Web Ser-
vice, all its methods, parameters, and return values. Thankfully, you don’t
have to do this by hand; the .NET Framework kit includes an application,
wsdl.exe, that does all the coding for you.

This is a remarkable bit of magic if you think about it: the
lion’s share of interfacing to a web service autogenerated

from a description thereof.

Call wsdl.exe with the location of your GoogleSearch.wsdl file like so:
C:\GOOGLY.NET>wsdl.exe GoogleSearch.wsdl

If you don’t happen to have the WSDL file handy, don’t fret. You can point
wsdl.exe at its location on Google's web site:

C:\GOOGLY.NET\CS>wsdl.exe http://api.google.com/GoogleSearch.wsdl
Microsoft (R) Web Services Description Language Utility

[Microsoft (R) .NET Framework, Version 1.0.3705.0]

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.
Writing file 'C:\GOOGLY.NET\CS\GoogleSearchService.cs'.

The end result is a GoogleSearchService.cs file that looks something like:

// <autogenerated>
1/ This code was generated by a tool.
1/ Runtime Version: 1.0.3705.288

1

17/ Changes to this file may cause incorrect behavior and will be lost if
1 the code is regenerated.

// </autogenerated>

J e e e e e e
1/

Introducing the Google Web API | 167

" Programming the Google Web AP| with C# and .NET

// This source code was auto-generated by wsdl, Version=1.0.3705.288.
/

using System.Diagnostics;

using System.Xml.Serialization;

using System;

using System.Web.Services.Protocols;

using System.ComponentModel;

using System.Web.Services;

public System.IAsyncResult BegindoGoogleSearch(string key,
string g, int start, int maxResults, bool filter, string restrict,
bool safeSearch, string lr, string ie, string oe,
System.AsyncCallback callback, object asyncState) {
return this.BeginInvoke("doGoogleSearch", new object[] {

key,

a,

start,

maxResults,

filter,

restrict,

safeSearch,

1r,

ie,

oe}, callback, asyncState);

Now on to googly.cs itself:

C:\GOOGLY .NET\CS>csc /out:googly.exe *.cs

Microsoft (R) Visual C# .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.0.3705

Copyright (C) Microsoft Corporation 2001. All rights reserved.

Running the Hack

Run Googly on the command line, passing it your Google query:

C:\GOOGLY.NET\CS>googly.exe "query words"

The DOS command window isn’t the best at displaying and
allowing scrollback of lots of output. To send the results of
your Google query to a file for perusal in your favorite text
editor, append: > results.txt.

The Results

% googly.exe "WSDL while you work"

Axis/Radio interop, actual and potential
http://www.intertwingly.net/stories/2002/02/08/
axisradioInteropActualAndPotential.html ... But
you might find more exciting services here

168 | Introducing the Google Web API

Programming the Google Web API with VB.NET

... Instead, we should work
together and
 continuously strive to ...
While WSDL is certainly far from
perfect and has many ...

Simplified WSDL
http://capescience.capeclear.com/articles/simplifiedwSDL/
... So how does it work?

... If youc would like to edit

WSDL while still avoiding
 all

those XML tags, check out the WSDL Editor in
CapeStudio. ...

—Chris Sells and Rael Dornfest

i @ Programming the Google Web API
with VB.NET
Create GUI and console Google search applications with Visual Basic and the
.NET framework.

Along with the functionally identical C# [Hack #58) version, the Google Web
APIs Developer’s Kit [in “The Google Web APls Developer's Kit"] (dotnet/Visual Basic
folder) includes a sample Google search in Visual Basic. While you can
probably glean just about all you need from the Google Demo Form.vb code,
this hack provides basic code for a simple console Google search applica-
tion without the possibile opacity of a full-blown Visual Studio .NET
project.

Compiling and running this hack requires that you have the
NET Framework (http://msdn.microsoft.com/library/default.
asp?url=/nhp/default.asp’contentid=28000519) installed.

The Code

' googly.vb
' A Google Web API VB.NET console application
' Usage: googly.exe <query>
' Copyright (c) 2002, Chris Sells.
' No warranties extended. Use at your own risk.
Imports System
Module Googly
Sub Main(ByVal args As String())
' Your Google API developer's key
Dim googleKey As String = "insert key here"
' Take the query from the command-line
If args.Length <> 1 Then
Console.Writeline("Usage: google.exe <query>")
Return

Introducing the Google Web APl | 169

Programming the Google Web APl with VB.NET

End If
Dim query As String = args(0)
' Create a Google SOAP client proxy, generated by:
' ¢:\> wsdl.exe /1:vb http://api.google.com/GoogleSearch.wsdl
Dim googleSearch As GoogleSearchService = New GoogleSearchService()
' Query Google
Dim results As GoogleSearchResult = googleSearch.
doGoogleSearch(googleKey, query, 0, 10, False, "", False, "", "latin1",
"latin1")
' No results?
If results.resultElements Is Nothing Then Return
' Loop through results
Dim result As ResultElement
For Each result In results.resultElements
Console.Writeline()
Console.WriteLine(result.title)
Console.WriteLine(result.URL)
Console.WriteLine(result.snippet)
Console.WriteLine()
Next
End Sub
End Module

You’ll need to replace "insert key here" with your Google developer’s key
[in “Using the Key in a Hack”] (e.g., 12BuCK13mYShOE/34KNOcK@ttH3DoOR). Your code
should look something like:

' Your Google API developer's key
Dim googleKey As String = "12BuCK13mYShOE/34KNOcK@ttH3DooR"

Compiling the Code

Before compiling the VB application code itself, you must create a Google
SOAP client proxy. The proxy is a wodge of code custom built to the specifi-
cations of the GoogleSearch.wsdl fin “wnat's wspL?"] file, an XML-based
description of the Google Web Service, all its methods, parameters, and
return values. Thankfully, you don’t have to do this by hand; the .NET
Framework kit includes an application, wsdl.exe to do all the coding for you.

This is a remarkable bit of magic if you think about it: the
lion’s share of interfacing to a web service autogenerated
from a description thereof.

Call wsdl.exe with the location of your GoogleSearch.wsdl file and specify
that you'd like Visual Basic proxy code:

C:\GOOGLY.NET\VB>wsdl.exe /1:vb GoogleSearch.wsdl

170 | Introducing the Google Web API

Programming the Google Web API with VB.NET

If you don’t happen to have the WSDL file handy, don’t fret. You can point
wsdl.exe at its location on Google’s web site:

C:\GOOGLY.NET\VB>wsdl.exe /1:vb http://api.google.com/GoogleSearch.wsdl
Microsoft (R) Web Services Description Language Utility

[Microsoft (R) .NET Framework, Version 1.0.3705.0]

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.
Writing file 'C:\GOOGLY.NET\VB\GoogleSearchService.vb'.

What you get is a GoogleSearchService.vb file with all that underlying Goo-
gle SOAP-handling ready to go:

<autogenerated>
This code was generated by a tool.
! Runtime Version: 1.0.3705.288

Changes to this file may cause incorrect behavior and will be lost if

the code is regenerated.
</autogenerated>

Option Strict Off

Option Explicit On

Imports System

Imports System.ComponentModel

Imports System.Diagnostics

Imports System.Web.Services

Imports System.Web.Services.Protocols

Imports System.Xml.Serialization

e

Public Function BegindoGoogleSearch(Byval key As String, ByVal q As
String, ByVal start As Integer, ByVal maxResults As Integer, ByVal
filter As Boolean, ByVal restrict As String, ByVal safeSearch As
Boolean, Byval lr As String, ByVal ie As String, ByVal oe As String,
ByVal callback As System.AsyncCallback, ByVal asyncState As Object) As
System.IAsyncResult

Return Me.BeginInvoke("doGoogleSearch", New Object() {key, q,
start, maxResults, filter, restrict, safeSearch, lr, ie, oe}, callback,
asyncState) End Function

'<remarks/>
Public Function EnddoGoogleSearch(ByVal asyncResult As System.
IAsyncResult) As GoogleSearchResult
Dim results() As Object = Me.EndInvoke(asyncResult)
Return CType(results(0),GoogleSearchResult)
End Function
End Class

Now to compile that googly.vb:

C:\GOOGLY.NET\VB>vbc /out:googly.exe *.vb

Microsoft (R) Visual Basic .NET Compiler version 7.00.9466

for Microsoft (R) .NET Framework version 1.00.3705

Copyright (C) Microsoft Corporation 1987-2001. All rights reserved.

Introducing the Google Web APl | 171

- Programming the Google Web APl with VB.NET

Running the Hack

Run Googly on the command line, passing it your Google query:
C:\GOOGLY.NET\VB>googly.exe "query words"

\ The DOS command window isn’t the best at displaying and

allowing scrollback of lots of output. To send the results of
your Google query to a file for perusal in your favorite text
editor, append: > results.txt

The Results

Functionally identical to its C# counterpart [Hack #38], running this Visual
Basic hack should turn up about the same results—Google index willing.

—Chris Sells and Rael Dornfest

172 | Introducing the Google Web API

CHAPTER SIX

Google Web API Applications

Hacks #60-85

It’s funny how people look at things in different ways. Nowhere is that more
apparent than with this section. In this part of the book, we’re going to look
at several different Google applications, which run the gamut from date-
range searching with a client-side application (an application that you run
from the desktop instead of from a web site) to a program that runs from a
web form to count the number of different suffixes in a search result page.

The Ingenuity of Millions

The release of the Google API in April 2002 inspired hundreds of people all
over the Web to try their hand at tapping Google’s data source, including
yours truly. Some of the earliest applications were tapping into Google’s
results and including them on a web page, or integrating Google results with
content management tools like Movable Type and Radio Userland. Then as
more people experimented with the API, the variety of applications grew
from the seriously useful to the amazingly silly. (We've created a special sec-
tion of the book for the amazingly silly ones.)

Learning to Code

Want to learn to code? Are you a barely beginning programmer who wants
to learn more? This isn’t the Camel Book (O’Reilly’s best selling Program-
ming Perl, at http://www.oreilly.com/catalog/pperl3/, in case you’re not yet in
the know), but if you’re interested in Perl, spend some time browsing
through this section. You can use these programs as they are, or use the
“Hacking the Hack” sections to tweak and fiddle with the scripts. This is a
useful way to get more Perl knowledge if you’re a searching nut, and you
want to play with programs that do something useful right out of the gate.

173

Date-Range Searching with a Client-Side Application

What You’ll Find Here

You'll find a variety of applications in this section, from visualizing Google
results to creating a “neighborhood” to restricting searches to top-level
results. But bear in mind that even though these are API programs, they’re
not the only ones in the book. You'll find applications using the Google API
in many sections of this book.

Finding More Google API Applications

The hacks in this book are only a few of the myriad applications available
online. Where to go if you want to find more?

Google Directory
Start with Google. The Google Directory offers a category for the Goo-
gle API at http://directory.google.com/Top/Computers/Internet/Searching/
Search_Engines/Google/Web_APIs/.

Soapware.org
Soapware.org has a brief list of API applications, available at http://
www.soapware.org/directory/4/services/googleApilapplications.

Daypop
Daypop (http://'www.daypop.com) is a search engine for news and
weblog sites. If there’s something buzzing about the weblog commu-
nity, it’s sure to be on Daypop. Search for “Google API” or “Google API
Applications” for pointers to Google API applications that people have
made mention of in their weblogs or web sites.

The Possibilities Aren’t Endless,
but They’re Expanding

The Google API is still in beta. Furthermore, it’s still pretty limited in what it
offers. You can’t get data from Google News, for example. That said, the
ingenuity of those fiddling with the Google API knows no bounds. Watch
the Web as the API expands, and more and more programmers take advan-
tage of its power.

HACK

Date-Range Searching with
:1i11] a Client-Side Application

Monitor a set of queries for new finds added to the Google index yesterday.

The GooFresh [Hack #42) hack is a simple web form—driven CGI script for
building date range [Hack #11] Google queries. A simple web-based interface is
fine when you want to search for only one or two items at a time. But what

174 | Google Web API Applications

Date-Range Searching with a Client-Side Application

of performing multiple searches over time, saving the results to your com-
puter for comparative analysis?

A better fit for this task is a client-side application that you run from the
comfort of your own computer’s desktop. This Perl script feeds specified
queries to Google via the Google Web API, limiting results to those indexed
yesterday. New finds are appended to a comma-delimited text file per query,
suitable for import into Excel or your average database application.

This hack requires an additional Perl module, Time::]Julian-
Day (http://search.cpan.org/author/MUIR/); it just wont

work until you have the module installed.

The Queries

First, you’ll need to prepare a few queries to feed the script. Try these out via
the Google search interface itself first to make sure you're receiving the kind
of results you're expecting. Your queries can be anything you’d be inter-
ested in tracking over time: topics of long-lasting or current interest,
searches for new directories of information [Hack #21] coming online, unique
quotes from articles or other sources that you want to monitor for signs of
plagiarism.

Use whatever special syntaxes you like except for link:; as you might
remember, link: can’t be used in concert with any other special syntax like
daterange:, upon which this hack relies. If you insist on trying anyway (e.g.,
link:www.yahoo.com daterange:2452421-2452521), Google will simply treat
link as yet another query word (e.g., link www.yahoo.com), yielding some
unexpected and useless results.

Put each query on its own line. A sample query file will look something like
this:

"digital archives"”

intitle:"state library of"

intitle:directory intitle:resources

"now * * time for all good men * come * * aid * * party"

Save the text file somewhere memorable; alongside the script you're about
to write is as good a place as any.

The Code

#!/usr/local/bin/perl -w

goonow.pl

feeds queries specified in a text file to Google, querying

for recent additions to the Google index. The script appends
to CSV files, one per query, creating them if they don't exist.
usage: perl goonow.pl [query_filename]

Google Web API Applications | 175

Date-Range Searching with a Client-Side Application

My Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

use strict;

use SOAP::Lite;
use Time::JulianDay;

$ARGV[0] or die "usage: perl goonow.pl [query_filename]\n";

my $julian_date = int local_julian_day(time) - 2;

my $google search = SOAP::Lite->service("file:$google wdsl");
open QUERIES, $ARGV[0] or die "Couldn’t read $ARGV[0]: $!";

while (my $query = <QUERIES>) {
chomp $query;
warn "Searching Google for $query\n"

$query .= " daterange:$julian_date-$julian_date”;
(my $outfile = $query) =~ s/\W/_/g;
open (OUT, ">> $outfile.csv")

or die "Couldn't open $outfile.csv: $!\n";

my $results = $google_search -»
doGoogleSearch(
$google_key, $query, 0, 10, "false", "", "false",
", "latin1", "latin1"
);
foreach (@{$results->{'resultElements'}}) {
print ouT "' . join('","", (
map {
s!\nllg; # drop spurious newlines
sl<.+?>!lg; # drop all HTML tags
s!"1""lg; # double escape " marks
} @ {'title', URL', snippet'}
)) L\
}

}

You'll notice that GooNow checks the day before yesterday’s rather than
yesterday’s additions (my $julian_date = int local julian_day(time) - 2;).
Google indexes some pages very frequently; these show up in yesterday’s
additions and really bulk up your search results. So if you search for yester-
day’s results, in addition to updated pages you’ll get a lot of noise, pages
that Google indexes every day, rather than the fresh content you're after.
Skipping back one more day is a nice hack to get around the noise.

176 | Google Web API Applications

Date-Range Searching with a Client-Side Application

Running the Hack

This script is invoked on the command line like so:
$ perl goonow.pl query_filename

Where query_filename is the name of the text file holding all the queries to
be fed to the script. The file can be located either in the local directory or
elsewhere; if the latter, be sure to include the entire path (e.g., /mydocu~1/
hacks/queries.txt).

Bear in mind that all output is directed to CSV files, one per query. So don’t
expect any fascinating output on the screen.

The Results

Taking a quick look at one of the CSV output files created, intitle_ _state_
library_of_.csv:

"State Library of Louisiana”,"http://www.state.lib.la.us/"," ...
Click

here if you have any questions or comments. Copyright <C2><A9>
1998-2001 State Library of Louisiana Last modified: August 07,
2002, "

"STATE LIBRARY OF NEW SOUTH WALES, SYDNEY
AUSTRALIA","http://www.slnsw.gov.au/", " ... State Library of New

South

Wales Macquarie St, Sydney NSW Australia 2000 Phone: +61 2 9273
1414

Fax: +61 2 9273 1255. Your comments You could win a prize! ... *
"State Library of Victoria","http://www.slv.vic.gov.au/"," ...
clicking

on our logo. State Library of Victoria Logo with link to homepage
State

Library of Victoria. A world class cultural resource ...

su

Hacking the Hack

The script keeps appending new finds to the appropriate CVS output file. If
you wish to reset the CVS files associated with particular queries, simply
delete them and the script will create them anew.

Or you can make one slight adjustment to have the script create the CSV
files anew each time, overwriting the previous version, like so:

(my $outfile = $query) =~ s/\W/_/g;
open (OUT, "> $outfile.csv")
or die "Couldn't open $outfile.csv: $!\n";
my $results = $google search ->
doGoogleSearch(

Google Web API Applications | 177

Adding a Little Google to Your Word

$google_key, $query, 0, 10, "false",
"", "latinm1", "latim"

s

, "false",

Notice the only change in the code is the removal of one of the > characters
when the output file is created—open (OUT, "> $outfile.csv") instead of
open (OUT, "»>> $outfile.csv").

g Adding a Little Google to Your Word

Use Google with Microsoft Word for better spelling suggestions than the
traditional dictionary.

Some of the hacks we cover in this book are very useful, some are weird, and
some of them are not exactly useful but have a definite cool factor. The first
version of CapeSpeller (http://'www.capescience.com/google/spell.shtml) fit
into that last category. Send a word via email and receive a spelling sugges-
tion in return.

While cool, there weren’t many scenarios where you'd absolutely need to use
it. But the newer version of CapeSpeller is far more useful; it’s now designed
to integrate with Microsoft Word and provide spelling suggestions powered
by Google as an alternative to the standard Word/Office dictionary.

Now, why in the world would you want another spellchecker in Word?
Doesn’t it already have a rather good one? Indeed it does, but it employs a
traditional dictionary, which falls over when faced with certain proper
nouns, jargon, and acronyms. Google’s dictionary [Hack #16] is chock-full of
these sorts of up-to-the-minute, hip, and non-traditional suggestions.

Using CapeSpeller
There are several steps to acquiring and installing CapeSpeller.

1. First, you'll need to have the Microsoft SOAP Toolkit installed (http://
msdn.microsoft.com/downloads/default.asp?URL=/code/sample.aspurl=/
msdn-files/027/001/580/msdncompositedoc.xml). It’s a fairly small down-
load but may take a little wrangling to get squared away. You must be
running Internet Explorer 5 or later. You may also have to update your
Windows Installer depending on what version of Windows you're using.
The CapeSpeller site (http://www.capescience.com/google/spell.shtml) pro-
vides more details.

2. Once you've got the SOAP toolkit squared away, you’ll have to get two
code items from CapeScience. The first is a zipped executable that’s avail-
able from http://www.capescience.com/google/download/CapeSpeller.zip.
Download that one, unzip it, and run the executable.

178 | Google Web API Applications

Permuting a Query

3. After you've downloaded and installed the executable, download the
source code. The source code contains a place for you to copy and paste
your APIL. Unless you’ve got a legit developer’s key there, you won’t be
able to get spelling suggestions from Google.

4. The final thing you’ll need to do to get CapeSpeller to work with Word is
to set up a macro. CapeScience offers instructions for setting up a
spellcheck macro at http://www.capescience.com/google/spelltoword.shtml.

l Permuting a Query
#62 Run all permutations of query keywords and phrases to squeeze the last drop
of results from the Google index.

Google, ah, Google. Search engine of over 3 billion pages and 3 zillion possi-
bilities. One of Google’s charms, if you're a search engine geek like me, is
trying various tweaks with your Google search to see what exactly makes a
difference to the results you get.

It’s amazing what makes a difference. For example, you wouldn’t think that
word order would make much of an impact but it does. In fact, buried in
Google’s documentation is the admission that the word order of a query will
impact search results.

While that’s an interesting thought, who has time to generate and run every
possible iteration of a multiword query? The Google API to the rescue! This
hack takes a query of up to four keywords or “quoted phrases” (as well as
supporting special syntaxes) and runs all possible permutations, showing
result counts by permutation and the top results for each permutation.

You’ll need to have the Algorithm::Permute Perl module
for this program to work correctly (http://search.cpan.org/
search?query=algorithm%3A%3Apermute&>mode=all).

The Code

#!/usr/local/bin/perl

order_matters.cgi

Queries Google for every possible permutation of up to 4 query keywords,
returning result counts by permutation and top results across
permutations.

order_matters.cgi is called as a CCI with form input

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

Google Web API Applications | 179

| Permuting a Query

use strict;

use SOAP::Lite;
use CGI gw/:standard *table/;
use Algorithm::Permute;

print

header(),

start_html("Order Matters"),

h1("Order Matters"),

start_form(-method=>'GET'),

‘Query: ‘, textfield(-name=>'query'),

' 8nbsp; *,

submit(-name=>'submit', -value=>'Search'), br(),

"¢Enter up to 4 query keywords or "quoted
phrases"",

end_form(), p();

if (param('query')) {

Clean keywords
my @keywords = grep !/"\s*$/, split /([+-]?".47")|\s+/, param('query');

scalar @keywords > 4 and
print('Only 4 query keywords or phrases allowed.
'), last;

my $google_search = SOAP::Lite->service("file:$google_wdsl");

print

start_table({-cellpadding=>'10', -border=>'1'}),
Tr([th({-colspan=>"2"}, ['Result Counts by Permutation'])]),
Tr([th({-align=>"left'}, ['Query', 'Count'])]);

my $results = {}; # keep track of what we've seen across queries

Iterate over every possible permutation
my $p = new Algorithm::Permute(\@keywords);
while (my $query = join(' ', $p->next)) {

Query Google
my $r = $google_search ->
doGoogleSearch(
$google_key,
$query,
0, 10, "false", "", "false", "", "latin1", "latin1"

);
print Tr([td({-align=>"left'}, [$query, $r->
{'estimatedTotalResultsCount'}])]);
@{$r->{ ' resultElements'}} or next;

180 | Google Web API Applications

Permuting a Query #

Assign a rank
my $rank = 10;
foreach (@{$r->{'resultElements'}}) {
$results->{$_->{URL}} = {
title => $_->{title},
snippet => $_->{snippet},
seen => ($results->{$_->{URL}}->{seen}) + $rank
b
$rank--;
}
}

print
end_table(), p(),
start_table({-cellpadding=>'10", -border=>'1'}),
Tr([th({-colspan=>'2"'}, ['Top Results across Permutations'])]),
Tr([th({-align=>"left'}, ["Score’, 'Result'])]);

foreach (sort { $results->{$b}->{seen} <=> $results->{$a}->{seen} } keys
#$results) {
print Tr(td([
$results->{$_}->{seen},
b($results->{$_}->{title}||'no title') . br() .
a({href=>$_}, $_) . br() .
i($results->{$_}->{snippet}|| 'no snippet’)
m;
}

print end_table(),

}
print end_html();

Running the Hack

The hack runs via a web form that is integrated into the code. Call the CGI
and enter the query you want to check (up to four words or phrases). The
script will first search for every possible combination of the search words
and phrases, as Figure 6-1 shows.

The script then displays top 10 search results across all permutations of the
query, as Figure 6-2 shows.

Using the Hack

At first blush, this hack looks like a novelty with few practical applications.
But if you're a regular researcher or a web wrangler, you might find it of
interest.

Google Web API Applications | 181

HACK
#62 Permuting a Query

Address @ hitp:/ /localhost fogi-bin forder _matters.cgi Pquery=applesoript+google+api

|Search|

Order Matters
Query: |applescript google api
Enter up to 4 query keywords
Result Counts by Permutation
Query Count
api google applescript | 819
google api applescript || 819
google applescript api || 819
api applescript google || 819
. applescript api google || 819
| applescript google api || 819

i
| Interniet-zone

Figure 6-1. List of permutations for applescript google api

If you're a regular researcher—that is, there are certain topics that you
research on a regular basis—you might want to spend some time with this
hack and see if you can detect a pattern in how your regular search terms are
impacted by changing word order. You might need to revise your searching

so that certain words always come first or last in your query.

If you're a web wrangler, you need to know where your page appears in
Google’s search results. If your page loses a lot of ranking ground because of
a shift in a query arrangement, maybe you want to add some more words to
your text or shift your existing text.

182 | Google Web API Applications

Tracking Result Counts over Time = #63

Score | Result

AppleScript for Google API

http://radio. weblogs.com/0100012/stories/2002/04/11/
60 app!

lescriptForGoogleApi.html
... AppleSeript for GoogicAPI. note - ﬁbfsnolau'd?]'perx.ﬁm
Tutor

4 | o Me: cmmgwmmmoﬂﬁrqﬂkmmmm
playing with Google's Web API and OmniGraffie to map back finks. ...
Designweenie | JSp PHP Objects Weblog

46 Jhwrww.desi ie.com/JS

. Me: Creating Website Maps with OmniGraffie and Applescript. I'm aiso
playing with Google's Web API and OmniGraffie to map back finks. ...

MR &

Tracking Result Counts over Time
63 Query Google for each day of a specified date range, counting the number of
results at each time index.

Sometimes the results of a search aren’t of as much interest as knowing the
number thereof. How popular a is a particular keyword? How many times is
so-and-so mentioned? How do differing phrases or spellings stack up against
each other?

You may also wish to track the popularity of a term over time to watch its
ups and downs, spot trends, and notice tipping points. Combining the Goo-
gle API and daterange: [Hack #11] syntax is just the ticket.

Google Web API Applications | 183

Tracking Result Counts over Time

This hack queries Google for each day over a specified date range, counting
the number of results for each day. This leads to a list of numbers that you
could enter into Excel and chart, for example.

There are a couple of caveats before diving right into the code. First, the
average keyword will tend to show more results over time as Google ads
more pages to its index. Second, Google doesn’t stand behind its date-range
search; results shouldn’t be taken as gospel.

This hack requires the Time::JulianDay (http://search.cpan.
org/search?query=Time%3A%3A]JulianDay) Perl module.

The Code

#!/usr/local/bin/perl

goocount.pl

Runs the specified query for every day between the specified
start and end dates, returning date and count as CSV.

usage: goocount.pl query="{query}" start={date} end={date}\n}
where dates are of the format: yyyy-mm-dd, e.g. 2002-12-31

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

use SOAP::lite;
use Time::JulianDay;
use CGI qw/:standard/;

For checking date validity
my $date_regex = '(\d{4})-(\d{1,2})-(\d{1,2})";

Make sure all arguments are passed correctly
(param('query') and param('start') =~ /~(?:$date_regex)?$/
and param('end') =~ /~(?:$date_regex)?$/) or
die qg{usage: goocount.pl query="{query}" start={date} end={date}\n};

Julian date manipulation
my $query = param('query');
my $yesterday julian = int local julian_day(time) - 1;
my $start_julian = (param('start') =~ /$date_regex/)
? julian_day($1,$2,$3) : $yesterday_julian;
my $end_julian = (param('end') =~ /$date_regex/)
? julian_day($1,$2,%3) : $yesterday_julian;

Create a new Google SOAP request
my $google search = SOAP::Lite-»service("file:$google wdsl");

184 | Google Web API Applications

Tracking Result Counts over Time

print qq{"date","count"\n};

Iterate over each of the Julian dates for your query
foreach my $julian ($start_julian..$end_julian) {
$full_query = "$query daterange:$julian-$julian”;
Query Google
my $result = $google search ->
doGoogleSearch(
$google_key, $full_query, 0, 10, "false", "", "false",
", "latin1", "latin1”
)i

Output
print

sprintf("%04d-%02d-%02d", inverse_julian_day($julian)),
qq{", "$result->{estimatedTotalResultsCount}"\n};

Running the Hack

Run the script from the command line, specifying a query, start, and end
dates. Perhaps you’d like to see track mentions of the latest Macintosh oper-
ating system (code name “Jaguar”) leading up to, on, and after its launch
(August 24, 2002). The following invocation sends its results to a comma-
separated (CSV) file for easy import into Excel or a database:

% perl goocount.pl query="0S X Jaguar" \

start=2002-08-20 end=2002-08-28 > count.csv
Leaving off the > and CSV filename sends the results to the screen for your
perusal:

% perl goocount.pl query="0S X Jaguar" \

start=2002-08-20 end=2002-08-28
If you want to track results over time, you could run the script every day
(using cron under Unix or the scheduler under Windows), with no date
specified, to get the information for that day’s date. Just use >> filename.csv
to append to the filename instead of writing over it. Or you could get the
results emailed to you for your daily reading pleasure.

The Results

Here’s that search for Jaguar, the new Macintosh operating system:

% perl goocount.pl query="0S X Jaguar” \
start=2002-08-20 end=2002-08-28

"date", "count”

"2002-08-20","18"

"2002-08-21","7"

Google Web APl Applications | 185

- Tracking Result Counts over Time

"2002-08-22","21"
"2002-08-23","66"
"2002-08-24","145"
"2002-08-25","38"
"2002-08-26","94"
"2002-08-27","55"
"2002-08-28","102"

Notice the expected spike in new finds on release day, August 24th.

Working with These Results

If you have a fairly short list, it’s easy to just look at the results and see if
there are any spikes or particular items of interest about the result counts.
But if you have a long list or you want a visual overview of the results, it’s
easy to use these numbers to create a graph in Excel or your favorite spread-
sheet program.

Simply save the results to a file, and then open the file in Excel and use the
chart wizard to create a graph. You'll have to do some tweaking but just gen-
erating the chart generates an interesting overview, as shown in Figure 6-3.

Figure 6-3. Excel graph tracking mentions of OS X Jaguar

Hacking the Hack

You can render the results as a web page by altering the code ever so slightly
(changes are in bold) and directing the output to an HTML file (>>
filename.html):

186 | Google Web APl Applications

Visualizing Google Results

print
header(),
start_html("GooCount: $query”),
start_table({-border=>undef}, caption("GooCount:$query")),
Tr([th(['Date’, 'Count']) 1);

foreach my $julian ($start_julian..$end_julian) {
$full_query = "$query daterange:$julian-$julian”;
my $result = $google search ->
doGoogleSearch(
$google_key, $full query, o, 10, "false", "", "false",
"", "latin1", "latin1”
)s
print
Tr([td([
sprintf("%04d-%02d-%02d", inverse_julian_day($julian)),
$result->{estimatedTotalResultsCount}
DD

print
end_table(),
end_html;

ﬁ Visualizing Google Results

The TouchGraph Google Browser is the perfect Google complement for those
who appreciate visual displays of information.

Some people are born text crawlers. They can retrieve the mostly text
resources of the Internet and browse them happily for hours. But others are
more visually oriented and find that the flat text results of the Internet leave
something to be desired, especially when it comes to search results.

If you're the type who appreciates visual displays of information, you’re
bound to like the TouchGraph Google Browser (http://www.touchgraph.
com/TGGoogleBrowser.html). This Java applet allows you to start with the
pages that are similar to one URL, and then expand outward to pages that
are similar to the first set of pages, on and on, until you have a giant map of
“nodes” (a.k.a. URLs) on your screen.

Note that what you're finding here are URLs that are similar to another
URL. You aren’t doing a keyword search, and you’re not using the link:
syntax. You're searching by Google’s measure of similarity.

Google Web API Applications | 187

' Visualizing Google Results

Starting to Browse

Start your journey by entering a URL on the TouchGraph home page and
clicking the “Graph It” link. Your browser will launch the TouchGraph Java
applet, covering your window with a large mass of linked nodes, as shown
in Figure 6-4.

Figure 6-4. Mass of linked nodes generated by TouchGraph

You'll need a web browser capable of running Java applets.
If Java support in your preferred browser comes in the form
of a plug-in, your browser should have the smarts to launch

a plug-in locator/downloader and walk you through the
installation process.

If you're easily entertained like me, you might amuse yourself for a while

just by clicking and dragging the nodes around. But there’s more to do than
that.

Expanding Your View

Hold your mouse over one of items in the group of pages. You’ll notice that
a little box with an H pops up. Click on that and you’ll get a box of informa-
tion about that particular node, as shown in Figure 6-5.

188 | Google Web API Applications

Visualizing Google Results

www. oreilly. com — Welcome to OReilly
& Associates — computer ..

Summary

Technical and computer book
documentation for Linue and ofher Open
Source sofware

Snippet

Al of O'Reilly. ...

D v ety COMY

Google Directory: O'Reilly & Associates
TepComputarsSoftwareOperating Sys

Figure 6-5. Node information pop-up box

The box of information contains title, snippet, and URL—pretty much
everything you’d get from a regular search result. Click on the URL in the
box to open that URL’s web page itself in another browser window.

Not interested in visiting web pages just yet? Want to do some more search
visualization? Double-click on one of the nodes. TouchGraph uses the API
to request from Google pages similar to the URL of the node you double-
clicked. Keep double-clicking at will; when no more pages are available, a
green C will appear when you put your mouse over the node (no more than
30 results are available for each node). If you do it often enough, you’ll end
up with a whole screen full of nodes with lines denoting their relationship to
one-another, as Figure 6-6 shows.

Visualization Options

Once you've generated similarity page listings for a few different sites, you’ll
find yourself with a pretty crowded page. TouchGraph has a few options to
change the look of what you’re viewing.

For each node, you can show page title, page URL, or “point” (the first two
letters of the title). If you’re just browsing page relationships, the title’s
probably best. However, if you've been working with the applet for a while

Google Web API Applications | 189

Figure 6-6. Node mass expanded by double-clicking on nodes

and have mapped out a plethora of nodes, the “point” or URL options can
save some space. The URL option removes the www and .com from the
URL, leaving the other domain suffixes. For example, www.perl.com will
show as perl, while www.perl.org shows as perl.org.

Speaking of saving space, there’s a zoom slider on the upper-right side of the
applet window. When you’ve generated several distinct groups of nodes,
zooming out allows you to see the different groupings more clearly. How-
ever, it also becomes difficult to see relationships between the nodes in the
different groups.

TouchGraph offers the option to view the “singles,” the nodes in a group
that have a relationship with only one other node. This option is off by
default; check the Show Singles checkbox to turn it on. I find it’s better to
leave them out; they crowd the page and make it difficult to establish and
explore separate groups of nodes.

The Radius setting specifies how many nodes will show around the node
you’ve clicked on. A radius of 1 will show all nodes directly linked to the
node you've clicked, a radius of 2 will show all nodes directly linked to the
node you've clicked as well as all nodes directly linked to those nodes, and

190 | Google Web API Applications

Visualizing Google Results

so on. The higher the radius, the more crowded things get. The groupings
do, however, tend to settle themselves into nice little discernable clumps, as
shown in Figure 6-7.

Figure 6-7. Node mass with Radius set to 4

A drop-down menu beside the Radius setting specifies how many search
results—how many connections—are shown. A setting of 10 is, in my expe-
rience, optimal.

Making the Most of These Visualizations

Yes, it’s cool. Yes, it’s unusual. And yes, it’s fun dragging those little nodes
around. But what exactly is the TouchGraph good for?

TouchGraph does two rather useful things. First, it allows you to see at a
glance the similarity relationship between large groups of URLs. You can’t
do this with several flat results to similar URL queries. Second, if you do
some exploration you can sometimes get a list of companies in the same
industry or area. This comes in handy when you’re researching a particular
industry or topic. It’ll take some exploration, though, so keep trying.

TouchGraph Google Browser created by Alex Shapiro (http:/www.
touchgraph.com/).

Google Web API Applications | 191

wﬂiﬁgéﬁ
#65 Meandering Your Google Neighborhood

Meandering Your Google Neighborhood

Google Neighborhood attempts to detangle the Web by building a
“neighborhood” of sites around a URL.

1465

It’s called the World Wide Web, not the World Wide Straight Line. Sites
link to other sites, building a “web” of sites. And what a tangled web we
weave.

Google Neighborhood attempts to detangle some small portion of the Web
by using the Google API to find sites related to a URL you provide, scraping
the links on the sites returned, and building a “neighborhood” of sites that
link both the original URL and each other.

If you'd like to give this hack a whirl without having to run it yourself,
there’s a live version available at http://diveintomark.orglarchives/2002/06/
04.html#who_are_the_people_in_your_neighborhood. The source code
(included below) for Google Neighborhood is available for download from
http://diveintomark.org/projects/misc/neighbor.py.txt.

The Code

Google Neighborhood is written in the Python (http://www.python.org) pro-
gramming language. Your system will need to have Python installed for you
to run this hack.

neighbor.cgi
Blogroll finder and aggregator

__author__ = "Mark Pilgrim (f8dy@diveintomark.org)"
__copyright__ = "Copyright 2002, Mark Pilgrim"
__license__ = "Python"

try:

import timeoutsocket # http://www.timo-tasi.org/python/timeoutsocket.py
timeoutsocket.setDefaultSocketTimeout(10)
except:
pass
import urllib, urlparse, os, time, operator, sys, pickle, re, cgi, time
from sgmllib import SGMLParser
from threading import *
BUFFERSIZE = 1024
IGNOREEXTS = ('.xml', '.opml', '.rss', '.rdf', ".pdf', '.doc")
INCLUDEEXTS = (', '.html', '.htm', '.shtml', '.php', '.asp', '.jsp')
IGNOREDOMAINS = ('cgi.alexa.com’, 'adserveri.backbeatmedia.com’,
‘ask.slashdot.org', 'freshmeat.net', 'readroom.ipl.org', ‘amazon.com',
'ringsurf.com')
def prettyURL(url):
protocol, domain, path, params, query, fragment = urlparse.urlparse(url)
if path == '/':
path = "'

192 | Google Web API Applications

Meandering Your Google Neighborhood

return urlparse.urlunparse(('',domain,path,’","","")).replace('//',"")

def simplifyURL(url):
url = url.replace("www.', '")
url = url.replace('/coming.html', '/")
protocol, domain, path, params, query, fragment = urlparse.urlparse(url)
if path == '":
url = url + */°
return url
class MinimalURLOpener(urllib.FancyURLopener):
def __init__(self, *args):
apply(urllib.FancyURLopener.__init__, (self,) + args)
self.addheaders = [('User-agent', '')]
def http_error_401(self, url, fp, errcode, errmsg, headers, data=None):
pass
class BlogrollParser(SGMLParser):
def __init__(self, url):
SCMLParser.__init__(self)
self.url = url
self.reset()

def reset(self):
SGMLParser.reset(self)
self.possible = []
self.blogroll = []
self.ina = 0

def _goodlink(self, href):

protocol, domain, path, params, query, fragment = urlparse.
urlparse(href)

if protocol.lower() <> 'http': return 0
if self.url.find(domain) <> -1: return 0
if domain in IGNOREDOMAINS: return 0
if domain.find(":5335") <> -1: return 0
if domain.find('.google') <> -1: return 0
if fragment: return 0
shortpath, ext = os.path.splitext(path)
ext = ext.lower()
if ext in INCLUDEEXTS: return 1
if ext.lower() in IGNOREEXTS: return 0
more rules here?
return 1

def _confirmpossibles(self):
if len(self.possible) >= 4:
for url in self.possible:
if url not in self.blogroll:
self.blogroll.append(url)
self.possible = []

def start_a(self, attrs):
self.ina = 1
hreflist = [e[1] for e in attrs if e[0]=="href']

Google Web API Applications | 193

> Meandering Your Google Neighborhood

if not hreflist: return
href = simplifyURL(hreflist[0])
if self._goodlink(href):
self.possible.append(href)
def end_a(self):
self.ina = 0

def handle_data(self, data):
if self.ina: return
if data.strip():
self._confirmpossibles()

def end_html(self, attrs):
self.confirmpossibles()
def getRadioBlogroll(url):
try:
usock = MinimalURLOpener().open('%s/gems/mySubscriptions.opml' %
url)
opmlSource = usock.read()
usock.close()
except:
return []
if opmlSource.find('<opml') == -1: return []
radioBlogroll = []
start = 0
while 1:
p = opmlSource.find('htmlUrl="", start)
if p == -1: break
refurl = opmlSource[p:p+100].split(""")[1]
radioBlogroll.append(refurl)
start = p + len(refurl) + 10
return radioBlogroll
def getBlogroll(url):
if url[:7] < "http://":
url = “http://" + url
radioBlogroll = getRadioBlogroll(url)
if radioBlogroll:
return radioBlogroll
parser = BlogrollParser(url)
try:
usock = MinimalURLOpener().open(url)
htmlSource = usock.read()
usock.close()
except:
return []
parser.feed(htmlSource)
return parser.blogroll
class BlogrollThread(Thread):
def __init__(self, master, url):
Thread.__init__(self)
self.master = master
self.url = url
def run(self):

194 | Google Web API Applications

Meandering Your Google Neighborhood

self.master.callback(self.url, getBlogroll(self.url))
class BlogrollThreadMaster:
def __init__(self, url, recurse):
self.blogrollDict = {}
self.done = 0
if type(url)==type(''):
blogroll = getBlogroll(url)
else:
blogroll = url
self.run(blogroll, recurse)

def callback(self, url, blogroll):
if not self.done:
self.blogrollDict[url] = blogroll

def run(self, blogroll, recurse):
start = 0
end = 5
while 1:
threads = []
for url in blogroll[start:end]:
if not self.blogrollDict.has_key(url):
t = BlogrollThread(self, url)
threads.append(t)
for t in threads:
t.start()
time.sleep(0.000001)
for t in threads:
time.sleep(0.000001)
t.join(10)
start += §
end += 5
if start > len(blogroll): break
if recurse > 1:
masterlist = reduce(operator.add, self.blogrollDict.values())
newlist = [url for url in masterlist if not self.blogrollDict.
has_key(url)]
self.run(newlist, recurse - 1)
else:
self.done = 1
def sortBlogrollData(blogrollDict):
sortD = {}
for blogroll in blogrollDict.values():
for url in blogroll:
sortD[url] = sortD.setdefault(url, 0) + 1
sortl = [(v, k) for k, v in sortD.items()]
sortI.sort()
sortI.reverse()
return sortl
def trimdata(sortI, cutoff):
return [(c, url) for c, url in sortl if c¢ »= cutoff]
def getRelated(url):
import google

Google Web APl Applications | 195

~ Meandering Your Google Neighborhood

Of course, you should alter the action= to point at the location in which you
installed the CGI script.

Figure 6-8 shows a representation of Rael’s (raelity.org’s, to be precise) Goo-
gle Neighborhood. Clicking on any of the links on the left transports you to
the URL shown. More interestingly, the “explore” link shifts your point-of-
view, centering the neighborhood on the associated URL. You can thus
meander a neighborhood to your heart’s content; don’t be surprised, espe-
cially in the blogging world, if you keep coming across the same links.
Speaking of links, the number listed beneath the “Links” heading represents
the number of links the associated site has to the currently focused site.

|

266 mmmmmw e
@ @ E 8 @W!fdlvelntomarkorgngl-hln;nelg a
Back Forward Reload Stop Sidebar
Neighborhood for raelity.org
: Name Links Explore
? wmf.editthispage.com 3 explore
radio.weblogs.com/0100887/ 3 explore
kottke.org 3 explore
jeremy.zawodny.com/blog/ 3 explore
www,xmlhack.com 2 explore
www.selisbrothers.com 2 explore
| www.razorsoft.net/weblog/ 2 explore
www.pocketsoap.com/weblog/ 2 explore
www.pipetree.com/gmacro 2 explore L
i www.intertwingly.net/blog/ 2 explore
' weblog.digital-identity.info 2 explore
rushkoff.com/blog.html| 2 explore
2
2
2
2
2
2

- radio.weblogs.com/0100812/ explore

Figure 6-8. raelity.org’s Google Neighborhood

198 | Google Web API Applications

Meandering Your Google Neighborhood ~ #65

<lastBuildDate>%(localtime)s</lastBuildDate>
<pubDate>%(localtime)s</pubDate>
<admin:generatorAgent rdf:resource="http://divintomark.org/cgi-bin/
neighborhood.cgi/?v=1.1" />
<admin:errorReportsTo rdf:resource="mailto:f8dy@diveintomark.org"/>
<sy:updatePeriod>weekly</sy:updatePeriod>
<sy:updateFrequency>1</sy:updateFrequency>
<sy:updateBase>2000-01-01T12:00+00:00</sy:updateBase>
<items>
<rdf:Seq>
""" % locals())
PR

for c, url, title in data:

output.append("""<rdf:1i rdf:resource="%s" />

"% url)

output.append("""</rdf:Seq>
</items>
</channel>

for ¢, url, title in data:

output.append("""<item rdf:about="%(url)s">

<title>®(title)s</title>
<link>%(url)s</link>
<description>¥(c)s links</description>
</item>
""" % locals())

output.append("""</rdf:RDF>""")

return “".join(output)
if __name__ == '_ main__

print render_html(getNeighborhood(sys.argv[1]))

Running the Hack

Google Neighborhood runs as a CGI script in your browser. Provide it the
URL you’re interested in using as the center, select HTML or RSS output
(see also “Syndicating Google Search Results” [Hack #82]), and hit the “Mean-
der” button.

You’ll need an HTML form to call Google Neighborhood. Here’s a simple
one:

<form action="/cgi-bin/neighborhood.cgi" method="get">

URL: <input name="url" type="text" />

Qutput as: <input name="fl" type="radio" value="html" checked="true" /> HTML
<input name="fl" type="radio" value="rss" checked="true" /> RSS

<input type="submit" value="Meander" />

</form>

Google Web API Applications | 197

* Meandering Your Google Neighborhood

Of course, you should alter the action= to point at the location in which you
installed the CGI script.

Figure 6-8 shows a representation of Rael’s (raelity.org’s, to be precise) Goo-
gle Neighborhood. Clicking on any of the links on the left transports you to
the URL shown. More interestingly, the “explore” link shifts your point-of-
view, centering the neighborhood on the associated URL. You can thus
meander a neighborhood to your heart’s content; don’t be surprised, espe-
cially in the blogging world, if you keep coming across the same links.
Speaking of links, the number listed beneath the “Links” heading represents
the number of links the associated site has to the currently focused site.

- @ E 3 @httpn‘dlvelntomarkmg;cgi ~bin/nei¢ - 5
Back Forward lleluaﬁ Stop Sidebar
Neighborhood for raelity.org
; Name Links Explore
wmf.editthispage.com 3 explore
radio.weblogs.com/0100887/ 3 explore
kottke.org 3 explore
jeremy.zawodny.com/blog/ 3 explore
www.xmlhack.com 2 explore
www.sellsbrothers.com 2 explore
www . razorsoft.net/weblog/ 2 explore
www.pocketsoap.com/weblog/ 2 explore
www,pipetree.com/gmacro 2 explore
www.intertwingly.net/blog/ 2 explore
igital-i 2 explore
rushkoff.com/blog.html 2 explore
robotwisdom.com 2 explore
radio.weblogs.com/0108971/ 2 explore
radio.weblogs.com/0107057/ 2 explore
radio.weblogs.com/0106541/ 2 explore
radio.weblogs.com/0100812/ 2 explore
peterme.com 2 explore GE |

Figure 6-8. raelity.org’s Google Neighborhood

198 | Google Web APl Applications

Running a Google Popularity Contest ~ #66

Hacking the Hack

If you want to hack this hack you can concentrate your efforts on a small
block of code specifying what file extensions you want to include and
exclude, as well as what domains you want to exclude when calculating
your neighborhoods:

IGNOREEXTS = ('.xml', ".opml®, ‘.rss', '.rdf', '.pdf', '.doc')

INCLUDEEXTS = (', '.html', ‘.htm', ‘.shtml', ‘.php', *.asp’, '.jsp')

IGNOREDOMAINS = ('cgi.alexa.com', 'adserveri.backbeatmedia.com', 'ask.

slashdot.org’, 'freshmeat.net', 'readroom.ipl.org', 'amazon.com',
'ringsurf.com')

Noticing/ignoring file extensions. The way the hack is currently written, the
neighborhood is built around pretty standard files. However, you could cre-
ate a neighborhood of sites served by PHP (http://www.php.net/), including
only URLs with a PHP (.php) extension. Or perhaps your interest lies in
Word documents and PDF files. You’d alter the code as follows:

IGNOREEXTS = ('.xml', '.opml’, '.rss', '.rdf', '.html‘, '.htm', '.shtml',

‘.php', ‘'.asp', '.jsp")

INCLUDEEXTS = ('*, '.pdf', '.doc')

Ignoring domains. Sometimes when you’re building a neighborhood you
might notice that the same links are popping up again and again. They're
not really part of the neighborhood but tend to be places that the web pages
making up your neighborhood often link to. For example, most Blogger-
based weblogs include a link to Blogger.com as a matter of course.

Exclude domains that hold no interest to you by adding them to the
IGNOREDOMAINS list:

IGNOREDOMAINS = ('cgi.alexa.com', ‘adserveri.backbeatmedia.com',
‘ask.slashdot.org', 'freshmeat.net’, 'readroom.ipl.org', 'amazon.com',
‘ringsurf.com', 'blogger.com")

Google Neighborhood was written by Mark Pilgrim (http:/diveintomark.org/).

Running a Google Popularity Contest

Put two terms, spelling variations, animals, vegetables, or minerals head to
head in a Google-based popularity contest.

Which is the most popular word? Which spelling is more commonly used?
Who gets more mentions, Fred or Ethel Mertz? These and other equally crit-
ical questions are answered by Google Smackdown (http://www.onfocus.
com/googlesmack/down.asp).

Google Web API Applications | 199

Running a Google Popularity Contest

Why would you want to compare search counts? Sometimes finding out
which terms appear more often can help you develop your queries better.
Why use a particular word if it gets almost no results? Comparing misspell-
ings can provide leads on hard-to-find terms or phrases. And sometimes it’s
just fun to run a popularity contest.

If you’re just searching for keywords, Google Smackdown is very simple.
Enter one word in each query box, a Google Web API developer’s key
[chapter 1] if you have one, and click the “throw down!” button. Smackdown
will return the winner and approximate count of each search.

If you’re planning to use a special syntax, you’ll have to be more careful.
Unfortunately the link: syntax doesn’t work. Interestingly, phonebook: does;
do more people named Smith or Jones live in Boston, MA?

To use any special syntaxes, enclose the query in quotes: "intitle:windows".

The next tip is a little backwards. If you want to specify a phrase, do not use
quotes; Smackdown, by default, searches for a phrase. If you want to search
for the two words on one page but not necessarily as a phrase (jolly AND
roger versus “jolly roger”), do use quotes. The reason the special syntaxes
and phrases work this way is because the program automatically encloses
phrases in quotes, and if you add quotes, you’re sending a double quoted
query to Google (""Google""). When Google runs into a double quote like
that, it just strips out all the quotes.

run it yourself, there’s a live version available at: http://www.
onfocus.com/googlesmack/down.asp.

i If you'd like to try a Google Smackdown without having to

The Code

Google Smackdown is written for ASP pages running under the Windows
operating system and Microsoft Internet Information Server (IIS).

Dim strGoogleKey
strGoogleKey = "you rkey goes here.

' The function GetResult() is the heart of Google Smackdown.
' It queries Google with a given word or phrase and returns
' the estimated total search results for that word or phrase.

200 | Google Web API Applications

Running a Google Popularity Contest

' By running this function twice with the two words the user
' enters into the form, we have our Smackdown.

Set the variable the contains the SOAP request. A SOAP

software package will generate a similar request to this

one behind the scenes, but the query for this application

is very simple so it can be set "by hand."

strRequest = "<?xml version='1.0" encoding="UTF-8'?>" & Chr(13) & Chr(10) &
Chr(13) & Chr(10)

strRequest = strRequest & "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://
schemas.xmlsoap.org/soap/envelope/"" xmlns:xsi=""http://www.w3.0rg/1999/
XMLSchema-instance"" xmlns:xsd=""http://www.w3.0rg/1999/XMLSchema"">" &
Chr(13) & Chr(10)

strRequest = strRequest & " <SOAP-ENV:Body>" & Chr(13) & Chr(10)
strRequest = strRequest & " <nsi:doGoogleSearch xmlns:nsi=""urn:
GoogleSearch™" SOAP-ENV:encodingStyle=""http://schemas.xmlsoap.org/soap/
encoding/"">" & Chx(13) & Chr(10)

strRequest = strRequest & " <key xsi:type=""xsd:string"">" & strGoogleKey
& "</key>" & Chr(13) & Chr(10)

strRequest = strRequest & " <q xsi:type=""xsd:string"">""" & term & """</
g>" & Chr(13) & Chr(10)

strRequest = strRequest & " «<start xsi:type=""xsd:int"">0</start>" &
Chr(13) & Chr(10)

strRequest = strRequest & " <maxResults xsi:type=""xsd:int"">1</
maxResults>" & Chr(13) & Chr(10)

strRequest = strRequest & " <filter xsi:type=""xsd:boolean"">true</filter>
" & Chr(13) & Chr(10)

strRequest = strRequest & " «<restrict xsi:type=""xsd:string""></restrict>"
& Chr(13) & Chr(10)

strRequest = strRequest & " <safeSearch xsi:type=""xsd:boolean"">false</
safeSearch>" & Chr(13) & Chr(10)

strRequest = strRequest & " <lr xsi:type=""xsd:string""></1r>" & Chr(13) &
Chr(10)

strRequest = strRequest & " «<ie xsi:type=""xsd:string"">latini</ie>" &
Chr(13) & Chr(10)

strRequest = strRequest & " <oe xsi:type=""xsd:string"">latini</oe>" &
Chr(13) & Chr(10)

strRequest = strRequest & " </nsi:doGoogleSearch>" & Chr(13) & Chr(10)
strRequest = strRequest & " </SOAP-ENV:Body>" & Chr(13) & Chr(10)
strRequest = strRequest & "</SOAP-ENV:Envelope>” & Chr(13) & Chr(10)

' The variable strRequest is now set to the SOAP request.

' Now it's sent to Google via HTTP using the Microsoft

' ServerXMLHTTP component.

Create the object...

Set xmlhttp = Server.CreateObject("MSXML2.ServerXMLHTTP")

Google Web AP Applications | 201

' Set the variable strURL equal to the URL for Google Web
' Services.

' Set the Content-Type header for the request equal to
' "text/xml" so the server knows we're sending XML.

' back.

If the parser hit an error--usually due to malformed XML,
write the error reason to the user. And stop the script.
' Google doesn't send malformed XML, so this code shouldn't
run.

If Allltems.parseExrror.ErrorCode <> 0 Then
response.write "Error: " & AllItems.parseError.reason
response.end

End If

' Release the ServerXMLHTTP object now that it's no longer
' needed--to free the memory space it was using.

Look for <faultstring> element in the XML the google has
' returned. If it exists, Google is letting us know that
' something has gone wrong with the request.

"

| Google Web API Applications

Running a Google Popularity Contest -

Set ofrror = AllItems.selectNodes("//faultstring”)
If ofrror.length > 0 Then
Set oErrorText = Allltems.selectSingleNode("//faultstring”)
GetResult = "Error: " & oErrorText.text
Exit Function
End If

' This is what we're after: the <estimatedTotalResultsCount>

' element in the XML that Google has returned.

Set oTotal = Allltems.selectSingleNode("//estimatedTotalResultsCount")
GetResult = oTotal.text

Set oTotal = Nothing

End Function
' Begin the HTML page. This portion of the page is the same
' for both the initial form and results.
%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Google Smackdown</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script language="JavaScript™>
// This client-side JavaScript function validates user input.
// If the form fields are empty when the user clicks "submit"
// this will stop the submit action, and prompt the user to
// enter some information.
function checkForm() {
var f = document.frmGSmack
if ((f.texti.value == '') || (f.text1i.value == ' ')) {
alert('Please enter the first word or phrase.')
return false;

if ((f.text2.value == '*) || (f.text2.value == ' ")) {
alert('Please enter the second word or phrase.
return false;

}

return true;
}
</scripts
</head>
<body>
<h1>Google Smackdown</h1>
This queries Google via its API and receives the estimated total results for
each word or phrase.
<k

—

Google Web API Applications | 203

If the form request items "text1" and "text2" are not
empty, then the form has been submitted to this page.

' It's time to call the GetResult() function and see which
' word or phrase wins the Smackdown.

' Send the word from the first form field to GetResult(),
' and it will return the estimated total results.

intResult1 = GetResult(request("text1"))

"

Check to make sure the first result is an integer. If not,
Google has returned an error message and the script will
' move on.

If isNumeric(intResult1) Then
intResult2 = GetResult(request("text2"))
End If

"

Check to make sure the second result is also an integer.
If they're both numeric, the script can display the
' results.

If isNumeric(intResult1) AND isNumeric(intResult2) Then
intResult1 = CDbl(intResult1)
intResult2 = (Dbl(intResult2)

response.write "<h2>The Results</h2>"
response.write "And the undisputed champion is...
"
response.write ""

' Compare the two results to determine which should be

' displayed first.

If intResult1 > intResult2 Then

response.write "<1i>" & request("text1i") & " (<a target=""_blank""
href=""http://www.google.com/search?hl=en8ie=UTF8&0e=UTF88q=" & Server.
URLEncode("""" & request("text1") & """") & """™>" &
FormatNumber (intResult1,0) & ")
"

204 | Google Web API Applications

Running a Google Popularity Contest

response.write “" & request("text2") & " (<a target=""_blank""
href=""http://www.google.com/search?hl=en&ie=UTF8&oe=UTF8&q=" & Server.
URLEncode("""" & request("text2") & """") & """>" &
FormatNumber (intResult2,0) & "</a»)
"

Else

response.write "" & request("text2") & " (<a target=""_blank""
href=""http://www.google.com/search?hl=en&ie=UTF8&oe=UTF8&g=" & Server.
URLEncode("""" & request("text2") & """") & """>" &
FormatNumber(intResult2,0) & ")
"

response.write "" & request("text1") & " (<a target=""_blank""
href=""http://www.google.com/search?hl=en&ie=UTF8&oe=UTF88q=" & Server.
URLEncode("""" & request("text1") & """") & """>" &
FormatNumber (intResult1,0) & ")
"

' Finish writing the results to the page and include a link
' to the page for another round.

response.write "</ol»"

response.write "<a href=""smackdown.asp
response.write "
"
Else

>Another Challenge?"

One or both of the results are not numeric. We can assume
this is because the developer's key has reached its

1,000 query limit for the day. Because the script has
made it to this point, the SOAP response did not return

an error. If it had, GetResult() would have stopped the
script.

intResult1 = Replace(intResult1,"key " & strGoogleKey,"key")
intResult2 = Replace(intResult2,"key " & strGoogleKey, "key")

' If the results are the same, we don't need to write out

' both of them.

If intResult1 = intResult2 Then

response.write intResult1 & "

"

Else

response.write intResult1 & "

" & intResult2 & "

"

response.write "Another Challenge?"
response.write "
"
End If

Else

Google Web API Applications | 205

Running a Google Popularity Contest

The form request items "text1” and "text2" are empty,
' which means the form has not been submitted to the page

yet.
%>
<h2>The Arena</h2>
<div class="clsPost">The setting is the most impressive search engine ever
built: Google. As a test of its «API, two words or phrases will go
head-to-head in a terabyte tug-of-war. Which one appears in more pages
across the Web?
<h2>The Challengers</h2>
You choose the warring words...

<form name="frmGSmack" action="smackdown.asp" method="post" onSubmit="return
checkForm();">
<table>

<tr>

<td align="right">word/phrase 1</td> <td><input type="text" name="text1">
</td>

</tr>

<tr>

<td align="right">word/phrase 2</td> <td><input type="text" name="text2">
</td>

</tr>

<tr>

<td> </td><td><input type="submit" value="throw down!"></td>

</tr>
</table>
</form>
<%

' This is the end of the If statement that checks to see
' if the form has been submitted. Both states of the page
' get the closing tags below.

%>

</body>

</html>

Running the Hack

The hack is run in exactly the same manner as the live version of Google
Smackdown (http://www.onfocus.com/googlesmack/down.asp) running on
Onfocus.com. Point your web browser at it and fill out the form. Figure 6-9
shows a sample Smackdown between negative feelings about Macintosh ver-

sus

Windows.

Google Smackdown was written by Paul Bausch (http://www.onfocus.com/).

| Google Web API Applications

Building a Google Box

| =
r 3

’ 2686 — — __onfocus.com : Google Smackdown (=]
@ @ @ } # http:/ jwww.onfocus.com/googlesmack/down.asp B

Back Forward Reload Stop Location Sidebar

http:/ fwww.onfocus.com/index.asp 2

Figure 6-9. Macintosh/Windows Google Smackdown

Building a Google Box
Add a little box of Google results to any web page.

Most of the applications in this book stand by themselves or run via a web
form. Google box is slightly different in that it creates a little output of URLs
that you can take and integrate into a web page or other application.

What'’s a Google Box?

A “Google box” is a small HTML snippet that shows Google search results
for whatever query you're searching for. You might wish to have on your
web site a small box that shows pages similar to yours, or pages that link to
yours, or just the results of a query.

Google Web API Applications | 207

Building a Google Box

Google Box

Google box can run from a server at a specified time, with results that you
can then integrate into your web page. Or you might just want to keep an
ongoing record of the top URLs that are generated for a query.

Google Boxes Everywhere

Google boxes as a concept—the idea of taking a shortened version of Goo-
gle results an integrating them into a web page or some other place—are not
new. In fact, they’re on their way to becoming ubiquitous when it comes to
weblog and content management software. Radio Userland and Movable
Type both offer easy integration of Google boxes. You should note that
you'll still need to get a developer’s key to use these modifications, though
you might not have to download the API developer’s kit.

Radio Userland. Radio Userland makes “Google Glue” (http://radio.userland.
com/googleApi) available for generating Google boxes quickly and easily.
With Userland and Manila, it’s as easy as integrating a single-line macro into
your web page.

Movable Type. Josh Cooper has written a Movable Type hack (http:/www.
10500bc.org/code/mt_howto_googleapi.php) that allows you to integrate
Google results into your Movable Type weblog. This one is a little more
complicated than the Radio Userland—you’ll have to edit a couple of files—
but once you’ve got the files edited, you can put result boxes anywhere on
your Movable Type templates.

Other implementations. The Google box is an easy thing to implement and
was one of the first examples of Google API usage to pop up last April. As
such, it enjoys the position of “proto-application”—a lot of developers whip
up a Google box just to see if they can. Do a Google search for “Google
box” to see some other examples of Google boxes for different languages
and applications. To get you started, Rael Dornfest has one at http://www.
oreillynet.com/cs/webloglview/wlg/1283.

What's in Your Google Box?

What goes in a Google box, anyway? Why would anybody want to inte-
grate them into a web page?

It depends on the page. Putting a Google box that searches for your name
onto a weblog provides a bit of egoboo and can give a little more informa-
tion about you without seeming like bragging (yeah, right). If you’ve got a

208 | Google Web API Applications

Building a Google Box

topic-specific page, set up a Google box that searches for the topic (the more
specific, the better the results). And if you've got a general “news” type
page, consider adding a Google box for the news topic. Google boxes can go
pretty much anywhere, with Google updating its index often enough that
the content of a Google box stays fresh.

The Code

#!/usr/local/bin/perl

google box.pl

A classic Google box implementation

Usage: perl google box.pl <query> <# results>

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

use strict;
use SOAP::Lite;

Bring in those command-line arguments
@ARGV == 2
or die "Usage: perl googlebox.pl <query> <# results>\n";
my($query, $maxResults) = @ARGV;
$maxResults = 10 if ($maxResults < 1 or $maxResults > 10)

Create a new SOAP::Lite instance, feeding it GoogleSearch.wsdl
my $google_search = SOAP::Lite->service("file:$google_wdsl");

Query Google
my $results = $google search -»
doGoogleSearch(
$google_key, $query, 0, $maxResults, "false", "",
"false", "", "latin1", "latin1"”

);

No results?
@{$results->{resultElements}} or die "no results”;

print join "\n",
map({
qq{{URL}">} .
($_->{title} || $_->{URL}) .
qq{
}
} @{$results->{resultElements}});

Google Web API Applications | 209

5. S

Running the Hack

Google box takes two bits of information on the command line: the query
you want to run and maximum number of results you’d prefer (up to ten). If
you don’t provide a number of results, Google box will default to ten.

% perl google_box.pl "query”

The Results

Here’s a sample Google box for "camel book", referring to O’Reilly’s popu-
lar Programming Perl title:
oreilly.com --
Online Catalog:Programming Perl, 2nd Edition

oreilly.com --
Online Catalog:Programming Perl, 3rd Edition

Programming
Perl, 2nd Edition</a»

Camel
Book

The Camel
Book<a>

Integrating a Google Box

When you incoporate a Google box into your web page, you'll have two
considerations: refreshing the content of the box regularly and integrating
the content into your web page. For refreshing the content of the box, you’ll
need to regularly run the program using something like cron under Unix or
the Windows Scheduler.

For including the content on your web page, Server Side Includes (SSI) are
always rather effective. SSI-including a Google box takes little more than
something like:

<1-- #include virtual="./google_box.html" -->

For more information on using Server Side Includes, check out the NCSA
SSI Tutorial (http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html), or
search Google for Server Side Includes Tutorial.

ﬂ Capturing a Moment in Time
68 Build a Google box for a particular moment in time.
Google boxes are a nice addition to your web pages, whether you run a

weblog or a news site. But for many Google box searches, the search results
won’t change that often, especially for more common search words. The

210 | Google Web API Applications

Capturing a Moment in Time

Timely Google box—built upon the ordinary Google box Hack #67] hack—
captures a snapshot of newly indexed or reindexed material at a particular
point in time.

Making the Google Box Timely

As you might remember, Google has a daterange: search syntax available.
This version of Google box takes advantage of the daterange:Hack #11] syn-
tax, allowing you to specifying how many days back you want your query to
run. If you don’t provide a number, the default is 1, and there’s no maxi-
mum. [wouldn’t go back much further than a month or so. The fewer days
back you go the more often the results in the Google box will change.

You’ll need the Julian::Day module to get this hack rolling
(http://search.cpan.org/search?query=time%3A %3 Ajulianday).

The Code

#!/usr/local/bin/perl

timebox.pl

A time-specific Google box

Usage: perl timebox.pl <query> <# results> <# days back>

Your Google API developer's key
my $google_key="insert key here’;

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

use strict;

use SOAP::Lite;
use Time::JulianDay;

Bring in those command-line arguments
@ARGV ==
or die "Usage: perl timebox.pl <query> <# results> <# days back>\n";
my($query, $maxResults, $daysBack) = @ARGV;
$maxResults = 10 if ($maxResults < 1 or $maxResults > 10);
$daysBack = 1 if $daysBack <= 0;

Figure out when yesterday was in Julian days
my $yesterday = int local_julian_day(time) - $daysBack;

Create a new SOAP::Lite instance, feeding it GoogleSearch.wsdl
my $google search = SOAP::lite->service("file:$google wdsl");

Query Google
my $results = $google search ->

Google Web API Applications | 211

- Capturing a Moment in Time

doGoogleSearch(
$google key, "$query daterange:$yesterday-$yesterday”, o,
$maxResults, "false", "", “"false", "", "latin1", "latinm"

)H

No results?
@{$results->{resultElements}} or die "no results”;

print join "\n",
map({
qq{{URL}">} .
($_->{title} || $_->{URL}) .
qq{
}
} @{$results->{resultElements}});

Running the Hack

You'll have to provide three items of information on the command line: the
query you want to run, maximum number of results you’d prefer (up to 10),

and number of days back to travel.

% perl timebox.pl "query" <# of results> <# days back>

The Results

Here’s a sample Google box for the top five “google hacks” results (this

book included, hopefully) indexed yesterday:

% perl timebox.pl "google hacks" 5 1
Google Hacks

Google Hacks

Amazon.ca: Google Hacks

Google Hacks

Google Hacks</

a>

Hacking the Hack

Perhaps you’d like your Google box to reflect “this day in 1999.” No prob-
lem for this slightly tweaked version of the Timely Google box (changes

highlighted in bold):

#1/usr/local/bin/perl

timebox_thisday.pl

A Google box for this day in <year>

Usage: perl timebox.pl <query> <# results> [year]

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

212

| Google Web API Applications

Capturing a Moment in Time

use strict;

use SOAP::Llite;
use Time::JulianDay;

my @now = localtime(time);

Bring in those command-line arguments

@ARGV ==

or die "Usage: perl timebox.pl <query> <# results> [year]\n”;
my($query, $maxResults, $year) = @ARGV;

$maxResults = 10 if ($maxResults < 1 or $maxResults > 10);
$year =~ /~\d{4}$/ or $year = 1999;

Figure out when this day in the specified year is
my $then = int julian_day($year, $now[4], $now[3]);

Create a new SOAP::Lite instance, feeding it GoogleSearch.wsdl
my $google_search = SOAP::Lite->service("file:$google wdsl");

Query Coogle
my $results = $google search ->
doGoogleSearch(
$google_key, “$query daterange:$then-$then”, o,
$maxResults, "false", "", "false", "", "latim1", "latin1”

);

No results?
@{$results->{resultElements}} or die "no results";

print join "\n",
"$query on this day in $year<p />",
map({
qq{{URL}">} .
($_->{title} || $_->{wRL}) .
qq{
}
} @{%results->{resultElements}});

Running the Hacked Hack

The hacked version of Timely Google box runs just like the first version,
except that you specify the maximum number of results and a year. Going
back further than 1999 doesn’t yield particularly useful results given that
Google came online in 1998.

Let’s take a peek at how Netscape was doing in 1999:

% perl timebox_thisday.pl "netscape" 5 1999

netscape on this day in 1999:<p />

WINSOCK.DLL and NETSCAPE Info for
AOL Members

Comment 99/3
- Netscape Communicator</a»>

Google Web APl Applications | 213

Feeling Really Lucky

NETSCAPE.

Le
Courrier électronique avec Netscape Messenger

Setting up Netscape 2.0 for
Airnews Proxy News

Jl Feeling Really Lucky

Take the domain in which the first result of a query appears, and do more
searching within that domain.

Does Google make you feel lucky [in "Google Basics” in Chapter 11?7 How lucky?
Sometimes as lucky as the top result is, more results from the same domain
are just as much so.

This hack performs two Google queries. The domain of the top result of the
first search is saved. Then the second query is run, searching only the saved
domain for results.

Take, for example, Grace Hopper, famous both as a computer programmer
and as the person who coined the term “computer bug.” If you were to run a
search result with "Grace Hopper" as the primary search and overlay a search
for COBOL on the domain of the first result returned, you’d find three pages
for the Grace Hopper Conference 2000:

Grace Hopper Conference 2000 - Biography

http://www.sdsc.edu/hopper/GHC_INFO/hopper.html
... The Murrays were a family with a long military

tradition;

Grace Hopper's ... language instructions led ultimately
to the

development of the business language COBOL ...

Note:

http://www.sdsc.edu/~woodka/intro.html

... publication, please contact me by email at:
woodka@sdsc.edu.

... and were important in its history, like Admiral
Grace Hopper,

the inventor of the COBOL ...

Grace Hopper
http://www.sdsc.edu/~woodka/hopper.html

... Hopper was a programmer on the world's first
large-scale

digital computer, Mark ... the first computer language
compiler,

and she worked on the development of COBOL ...

You could also do a primary search for a person (“Stan Laurel”) and a sec-
ondary search for another person (“Oliver Hardy”). Or search for a person,
followed by their corporate affiliation.

214 | Google Web API Applications

Feeling Really Lucky ;

Don’t try doing a link: search with this hack. The link: spe-
cial syntax doesn’t work with any other special syntaxes, and
this hack relies upon inurl:.

The Code
#!/usr/local/bin/perl
goolucky.cgi
gleans the domain from the first (read: top) result returned, allows

you to overlay another query, and returns the results, and so on...
goolucky.cgi is called as a CGI with form input

Your Google API developer's key
my $google_key="insert key here’;

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

use strict;

use SOAP::Lite;
use CGI qw/:standard/;

Create a new SOAP instance
my $google search = SOAP::Lite-»service("file:$google wdsl");

If this is the second time around, glean the domain

my $query domain = param('domain') ? "inurl:" . param('domain') : '';
my $results = $google_search ->
doGoogleSearch(

$google_key, param(‘'query') . " $query_domain”, 0, 10,
"false", "", "false", "", "latin1”, "latim1”

);

Set domain to the results of the previous query
param('domain’, $results->{'resultElements'}->[0]->{"URL'});
param('domain’, param('domain') =~ m#://(.*?)/4#);

print
header(),
start_html("I'm Feeling VERY Lucky"),
h1("I'm Feeling VERY Lucky"),
start_form(),
'Query: ', textfield(-name=>'query',
-default=>"'"Crace Hopper"'),
' ',
'‘Domain: ', textfield(-name=>'domain'),
' ',
submit(-name=>'submit’, -value=>'Search'),
p(),

'Results:’;

Google Web API Applications | 215

Feeling Really Lucky

foreach (@{$results->{'resultElements'}}) {
print p(
b($_->{title}), br(),
a({bhref=>$%_->{URL}}, $ ->{URL}), bx(),
i($_->{snippet})
);
}

print
end_form(),
end_html();

Hacking the Hack

You can also run this hack so it only uses one query. For example, you do a
search with Query A. The search grabs the domain from the first result. Then
you run another search, again using Query A, but restricting your results to
the domain that was grabbed in the first search. This is handy when you’re
trying to get information on one set of keywords, instead of trying to link two
different concepts. Figure 6-10 illustrates the I'm Feeling Lucky search.

I'm Feeling VERY Lucky

Results:

GHC2002

http://www.gracehopper.org/

... Download the Grace Hopper Advance Program (download pdf). Past Grace

Hopper ... receive

the Hopper Advance Program and registration when available: ghc2002.updates ...

GHC2002

http://www.gracehopper.org/gmh. html

..Tﬁelﬁavuysumreajbmd?unﬂlaimqguuﬁMRVﬁmuﬂnou.Gbuuelﬁqan%
Revolutionary Wt

ancestors had served in the American

Gnce llopper Conference

h -PDF

u.EheaI}%tuﬁuzr jhmhShygmauIﬂauunq;lhﬂuunmsiﬁ?!ku:IﬂﬂﬁShn(}nias
CA 94070

Tel: 650-592-9227 Fax: 650-592-9154 www.gracehopper.org Page 2. Grace
Hopper ...

GHC2002
http:/www.

WTD CrTeC nrnm;wn T LD AT TODDED 710 M. Lot 4/

NET

Figure 6-10. I'm Feeling VERY Lucky search
216 | Google Web API Applications

Gleaning Phonebook Stats

ﬂ | Gleaning Phonebook Stats

#70 The Google APl doesn’t return data from a search using the phonebook
syntaxes, but that doesn’t mean you can’t have some fun with it.

The Google API doesn’t return results for queries using the phonebook: [Hack
#17) syntaxes. It does, however, provide a result count!

Because it doesn’t actually get you any phone numbers, passing a phonebook
query to the Google API has minimal value. Nevertheless, this little hack
makes the most of it. Ever wonder how many people with a particular sur-
name one might find in various U.S. citiess—the 15 most populated, at least?

The Code

#!/usr/local/bin/perl

kincount.cgi

How many people share a surname in the 15 most populated
US cities?

kincount.cgi is called as a CGI with form input

Your Google API developer's key
my $google_key="insert key here’;

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

15 most populated US cities

my @cities = ("New York NY", "Los Angeles CA", "Chicago IL",
"Houston TX", "Philadelphia PA", "Phoenix AZ", "San Diego CA",
"Dallas TX", "San Antonio TX", "Detroit MI", "San Jose CA",
"Indianapolis IN", "San Francisco CA", "Jacksonville FL",
"Columbus OH");

use strict;

use SOAP::Lite;
use CGI gw/:standard *table/;

print
header(),
start_html("KinCount"),
h1("KinCount"),
start_form(-method=>"GET"),
'Surname: ', textfield(-name=>'query', -default=>'John Doe'),
' ',
submit(-name=>"submit', -value=>'Search'),
end_form(), p();

my $google search = SOAP::Lite->service("file:$google wdsl");

Google Web API Applications | 217

i [

if (param(’query’)) {
print
start_table({-cellspacing=>'5'}),
Tr([th({-align=>"1left'}, ['City', 'Count'])]);

foreach my $city (@cities) {
my $cityquery = "rphonebook:" . param('query') . " $city";
my $results = $google search ->
doGoogleSearch(
$google key, $cityquery, 0, 10, "false", "", “false",
"*, "latim1”, "latin1"

);
my $resultcount = "$results->{'estimatedTotalResultsCount'}";

print Tr([td([
$city,
$resultcount >= 600
? "Too many for an accurate count.”
: $resultcount

)
1
}

print
end_table(),
}

Running the Hack

This hack runs as a CGI script; call it from your browser and fill in the form.

Results
Figure 6-11 the results of a phonebook search for Bush.

Notice that this script works equally well if fed a full name, "George Bush",
as Figure 6-12 shows.

Hacking the Hack

Residential, business, or both. Notice that the script uses the rphonebook: syn-
tax, guaranteeing only residential phonebook results. To restrict results to

business listings, use bphonebook: instead, altering only one line (change in
bold) in the code, like so:

my $cityquery = “bphonebook:" . param(‘query') . " $city";

218 | Google Web API Applications

Gleaning Phonebook Stats

SH@ nttp:/ /locathost/kincount ogi?query=Bush

KinCount

Sumame: [Bush Search

City Count

New Yok NY 122

Los Angeles CA 87

Chicago IL 194

Houston TX 267 -

Figure 6-11. KinCount search for Bush

New Yok NY 0
Los AngelesCA 0
Chicago IL 0
Houston TX 9

Figure 6-12. KinCount search for “George Bush”

A search for pizza provides a rundown of the number of pizza joints across
U.S. cities. Searching for rphonebook:pizza, as one would expect, returns
very few results. bphonebook:pizza behaves as expected.

The same holds true for replacing bphonebook: with phonebook:, thereby
removing restriction by type of listing and returning all results, residential
and business alike.

Google Web API Applications | 219

— J—

Of course you could always add a field to the form, allowing users to decide
which type of survey they prefer. The following code (changes in bold) will
do the trick nicely:

#!/usr/local/bin/perl

kincount.cgi

How many people share a surname in the 15 most populated
US cities?

kincount.cgi is called as a CGI with form input

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

15 most populated US cities

my @cities = ("New York NY", "Los Angeles CA", "Chicago IL",
"Houston TX", "Philadelphia PA™, "Phoenix AZ", "San Diego CA",
"Dallas TX", "San Antonio TX", "Detroit MI", "San Jose CA",
"Indianapolis IN", "San Francisco CA", "Jacksonville FL",
"Columbus OH");

use strict;

use SOAP::Lite;
use CGI qw/:standard *table/;

print
header(),
start_html("KinCount"),
h1("KinCount™),
start_form(-method=>'GET'),
‘Query: ', textfield(-name=>"query', -default=>'John Doe'),
' ',
popup_menu(
-name=>'listing_type’',
-values=>['rphonebook: ', 'bphonebook:', 'phonebook:'],
-labels=&t;{ 'rphonebook:'=>'Residential’,
'bphonebook: '=>'Business’, 'phonebook:'=>'All Listings' }
)5

' ',
submit(-name=>"submit’, -value=>'Search'),
end_form(), p();

my $google_search = SOAP::Lite->service("file:$google_wdsl");

if (param(’query’)) {
print
start_table({-cellspacing=>'5'}),
Tr([th({-align=>"left'}, ['City', 'Count'])]);

220 | Google Web API Applications

Gleaning Phonebook Stats

foreach my $city (@cities) {
my $cityquery = param('listing_type') . param('query') . " $city";
my $results = $google_search ->
doGoogleSearch(
$google_key, $cityquery, 0, 10, "false”, "", "false",
" "latin1", "latin1”

);
my $resultcount = "$results->{'estimatedTotalResultsCount'}";

print Tr([td([
$city,
$resultcount >= 600
? "Too many for an accurate count.”
: $resultcount
D

1;

}

print
end_table(),

The results of a search for bphonebook:pizza using this altered form look
something like Figure 6-13.

KinCount
Query: |pizze [Business

[2] [Search)

City Count
New York NY 416
Los Angeles CA 309
; Chicago IL 384
Houston TX 375

Figure 6-13. Results of bphonebook:pizza

And it doesn’t just count the number of pizza joints, either! How about cal-
culating a geek index based on the number of geek landmarks—business
listings for: electronics stores, computer shops, Internet companies, cyber
cafes, etc.

Google Web API Applications | 221

Performing Proximity Searches

The cities. This script holds its list of cities in an array. Of course, you don’t
have to do it this way. You could create a form field that accepts user-
entered city, state, or both. Just be sure to remind your users that the phone-
book syntaxes require either the entire state name or the postal code abbre-
viation; either of these two will work:

bphonebook:pizza los angeles california
bphonebook:pizza los angeles ca

This will not:
bphonebook:pizza los angeles cali

The 600-Foot Ceiling

A phonebook syntax search via the Google Web API will consistently return
a ceiling of 600 for any count higher than that; thus, the “Too many for an
accurate count” error message. Without that error check, you'd find the
600s that kept showing up rather repetitive, not to mention useless.

i esss Performing Proximity Searches
#71 GAPS performs a proximity check between two words.

There are some times when it would be advantageous to search both for-
ward and backward. For example, if you’re doing genealogy research, you
might find your uncle John Smith as both John Smith or Smith John. Simi-
larly, some pages might include John’s middle name—3John Q Smith or Smith
John Q.

If all you're after is query permutations, the Permute hack

[Hack #62] might do the trick.

You might also need to find concepts that exist near each other but aren’t a
phrase. For example, you might want to learn about keeping squirrels out of
your bird feeder. Various attempts to create a phrase based on this idea
might not work, but just searching for several words might not find specific
enough results.

GAPS, created by Kevin Shay, allows you to run searches both forward and
backward and within a certain number of spaces of each other. GAPS stands
for “Google API Proximity Search,” and that’s exactly what this application
is: a way to search for topics within a few words of each other without hav-
ing to run several queries in a row. The program runs the queries and orga-
nizes the results automatically.

| Google Web API Applications

Performing Proximity Searches

You enter two terms (there is an option to add more terms that will not be
searched for proximity) and specify how far apart you want them (1, 2, or 3
words). You can specify that the words be found only in the order you
request (wordA, wordB) or in either order (wordA, wordB, and wordB,
wordA). You can specify how many results you want and in what order they
appear (sorted by title, URL, ranking, and proximity).

Search results are formatted much like regular Google results, only they
include a distance ranking beside each title. The distance ranking, between
one and three, specifies how far apart the two query words were on the
page. Figure 6-14 shows a GAPS search for google and hacks within two
words of one another, order intact.

m._';;;_ — = ~ near M_:_ e e 3
& E " 38 1@ hetp/ /v staggernation.com| cgi-bin/ gaps.cgimterm1=googh -ﬁ
Back Forward lllM Stop Location Sidebar

Google APl Proximity Search (GAPS)
From staggernation.com - Read Me - GAPS - GARBO - GAWSH

Finagoogle |within ZMM wordis)offPacks | (Serch)
et 1 (e M o

sm@mm with up to (1OJ from each query BFM@@

License If you have your cwn Google AP lcente ey, we would ascrecate your
r—hef-‘ﬂ'_l entering it here. It will e used only for he searches you Go with this seript,
250 8wl ROt D8 FIoRed Srywhene of Lted A %y OUNY wly.

Sifr’s Alerts The wirsless industry, 802 11, Sputnik, and other interesting St
« A great new use of the Google AP1 and SOAP | Main | SMC chooses TT ..
http:/Awwew.sifry. com/alerts/archives/000070.htmi - 14k - Cached - Similar pages

mmwmwmnmmmmlwwmmm '
dnwdwdmyﬂegtawdﬁmldmwlmwm
hitp://www.risjr.org/archives/20020422. htm - 25k - Cached - Similar pages

Google Hacks [distance: 0]

... Bestellinformationen. Google Hacks Tara Calishain First Edition Februar 2003
ISBN 0-596-00447-8 Seiten 256 (ca.) EUR22.00 (ca.), SFR35.90 (ca.) ...
hitp:/fwww.oreilly.de/catalog/googlehks/ - 11k - Cached - Similar pages

M€

Figure 6-14. GAPS search for “google” and “hacks™ within two words of one another
Click the distance rating link pass the generated query on to Google directly.

Making the Most of GAPS

GAPS works best when you have words on the same page that are ambigu-
ously or not at all related to one another. For example, if you're looking for

Google Web API Applications |

Performing Proximity Searches

information on Google and search engine optimization, you might find that
searching for the words Google and SEO don’t find the results you want,
while using GAPS to search for the words Google and SEO within three
words of each other find material focused much more on search engine opti-
mization for Google.

GAPS also works well when you’re searching for information about two
famous people who might often appear on the same page, though not neces-
sarily in proximity to each other. For example, you might want information
on Bill Clinton and Alan Greenspan, but might find that you’re getting too
many pages that happen to list the two of them. By searching for their
names in proximity to each other, you'll get better results.

Finally, you might find GAPS useful in medical research. Many times your
search results will include “index pages” that list several symptoms. How-
ever, including symptoms or other medical terms within a few words of each
other can help you find more relevant results. Note that this technique will
take some experimentation. Many pages about medical conditions contain
long lists of symptoms and effects, and there’s no reason that one symptom
might be within a few words of another.

The Code

The GAPS source code is rather lengthy so we’re not making it available
here. You can, however, get it online at http://www.staggernation.com/gaps/
readme.html.

Other Staggernation Scripts

If you like GAPS, you might want to try a couple of other scripts from Stag-
gernation:

GAWSH (http://www.staggernation.com/gawsh/)
Stands for Google API Web Search by Host. This program allows you to
enter a query and get a list of domains that contain information on that
query. Click on the triangle beside any domain name, and you’ll get a
list of pages in that domain that match your query. This program uses
DHTML, which means it'll only work with Internet Explorer or
Mozilla/Netscape.

GARBO (http://www.staggernation.com/garbo/)
Stands for Google API Relation Browsing Outliner. Like GAWSH, this
program uses DHTML so it'll only work with Mozilla and Internet
Explorer. When you enter an URL, GARBO will do a search for either
pages that link to the URL you specify or pages related to that URL.

224 | Google Web API Applications

Blending the Google and Amazon Web Services

Run a search and you’ll get a list of URLs with triangles beside them.
Click on a triangle, and you’ll get a list of pages that either link to the
URL you chose or are related to the URL you chose, depending on what
you chose in the initial query.

Blending the Google and

Amazon Web Services
A blending of the Google and Amazon web service APIs.

V472

Google doesn’t have a lock on the API concept. Other companies and sites,
including online bookstore Amazon, have their own APIs. Mockerybird’s
Book Watch Plus (http://mockerybird.com/bookwatch-plus/bookwatch-plus.cgi)
blends the Google and Amazon APIs with a feed of information from the Book
Watch service (http://onfocus.com/Book Watch/) to create a list of books, refer-
rals to them in Google, and a list of items that people who bought that book
on Amazon also bought. Figure 6-15 illustrates this.

Figure 6-15. Book Watch Plus

How It Works

Book Watch Plus does several things to generate its page of information.
First, it grabs a page of books most frequently mentioned on weblogs. That
list is generated by another service run by Paul Bausch’s Book Watch service.

Google Web API Applications | 225

Blending the Google and Amazon Web Services

Book Watch Plus wrangles the ISBNs (unique identifiers for books) and then
places a couple of calls. The first is to the Amazon web service for detailed
information on the book. Then Google is queried via the Google Web API
for items related to the book. All this information is aggregated on a regular
basis rather than on the fly for each visitor. Results are cached in XML and
displayed in the form of a web page via the HTML::Template Perl module.

information, the hack would be a bit involved, and you’d be
right. Running the hack requires two modules, a code snip-
pet, and a template. They're all available at http://
mockerybird.com/bookwatch-plus/.

\ You might think that with all this fetching and displaying of

The Modules
You'll need two modules for Book Watch Plus: AmazonAPI and GoogleAPI.

AmazonAPl. The AmazonAPI module is available at http://mockerybird.com/
bookwatch-plus/AmazonAPLpm. You’ll have to get yourself a free Amazon
Associates account (http://amazon.com/webservices/) before you can use it.
Most of the module you can use as it stands, but you will have to make a
small alteration to the beginning of the code:

Your Amazon.com associates id and Web Services Dev Token.

(learn more about these here: http://amazon.com/webservices/)

my $ASSOCIATE_ID = 'mockerybird';

my $AMAZON_DEV_TOKEN = 'a-token';

The directory you'd like to store cached asins:

(it defaults to the same directory as the script, but you'll

probably want to change that.)

my $XML_DIR = "./";
You'll need to replace mockerybird with your own Amazon Associate ID,
and a-token with your own Web Services Development Token.

If you want to have the cached book information stored in a different direc-
tory than where the script is located, you’ll need to change the my $XML_DIR
line to the directory of your choice.

For example, if your associate ID were tara, developer token googlehacks,
and preferred cache directory /home/tara/google/bookwatchplus/cache,
those lines should read:

Your Amazon.com associates id and Web Services Dev Token.

(learn more about these here: http://amazon.com/webservices/)
my $ASSOCIATE ID = 'tara’;

my $AMAZON DEV_TOKEN = 'googlehacks’;

The directory you'd like to store cached asins:

226 | Google Web API Applications

(it defaults to the same directory as the script, but you'll
probably want to change that.)
my $XML_DIR = "/home/tara/google/bookwatchplus/cache”;

(Note the changes highlighted in bold.)

GoogleAPl. The GoogleAPI.pm module is available at http://mockerybird.com/
bookwatch-plus/GoogleAPL.pm. You’ll have to make a couple of changes to
this module as well; the lines you’re after are:

package GoogleAPI;

The directory you'd like to store cached asins:

(it defaults to the same directory as the script, but you'll

probably want to change that.)

my $XML_DIR = "./"; # <-- PUT A DIRECTORY HERE TO STORE XML

Get your Google API key here:

http://www.google.com/apis/download.html

my $key = ""; # <-- PUT YOUR KEY HERE

Just like the AmazonAPI, you’ll have an option to change the directory to
which cached information is saved. If you want to change the directory (by
default, the information is saved in the same directory where the script is
installed) change the my $XML_DIR line. You'll also need to put your Google

developer’s key on themy $key = ""; line.

If your Google Web API developer’s key were 12BuCK13mY5hoOE/
34KNOcK@ttH3DoOoR and preferred cache directory /home/tara/google/
bookwatchplus/cache, those lines should read:

package GoogleAPI;

The directory you'd like to store cached asins:

(it defaults to the same directory as the script, but you'll

probably want to change that.)

my $XML_DIR = "/home/tara/google/bookwatchplus/cache”;

<-- PUT A DIRECTORY HERE TO STORE XML

Get your Google API key here:

http://www.google.com/apis/download.html

my $key = "12BuCK13mYShOE/34KNOCK@ttH3DoOR";

<-- PUT YOUR KEY HERE

(Note the changes highlighted in bold.)

The Template

There’s a sample template available at http://mockerybird.com/bookwatch-
plus/bookwatch-plus.txt.

The CGI Script

Finally, you’ll need the CGI script itself; it’s available at http://mockerybird.
com/bookwatch-plus/bookwatch-plus-cgi.txt. You’ll need to change several

Google Web API Applications | 227

- Getting Random Results (On Purpose)

variables on the CGI script. They're listed at the beginning of the script and
are as follows:

$default_book_rss_feed url
The RSS feed you want as the default for the hack
$book_display template
The default template with which you want to display the Book Watch
items
$number_of_items_in_list
Number of items to display
$number_of_google_results
Number of results from Google (defaults to 5)

$number_of_amazon_similarities
Number of similar items listed at Amazon (defaults to 3)

$xml_cache_directory
Where to store the XML cache materials

$num_minutes_to_cache_rss_feeds
For how long your RSS feeds should be stored before being refreshed

In addition to these variables, you can alter the list of RSS feeds used by the
site, from which the program gets its book information. If you don’t have
any RSS feeds in mind, leave the ones that are here alone and don’t alter the
$default book rss_feed url above.

Running the Hack

Drop the CGI script (bookwatch-plus.cgi), the two modules (AmazonAPI.pm
and GoogleAPLpm), and the template file (bookwatch-plus.txt) into place.
Invoke the CGI script from your browser and enjoy.

Bookwatch Plus application written by Erik Benson.

E Getting Random Results (On Purpose)
#73 Surfing random pages can turn up some brilliant finds.

Why would any researcher worth her salt be interested in random pages?
While surfing random pages isn’t what one might call a focused search,
you'd be surprised at some of the brilliant finds you’d never have come
across otherwise. I've loved random page generators associated with search
engines ever since discovering Random Yahoo! Link (http://random.yahoo.
com/bin/ryl) and thought creating such a thing to work with the Google API
might prove interesting, useful even.

228 | Google Web API Applications

Getting Random Results (On Purpose)

The Code

What this code does is search for a random number between 0 and 99999
(yes, you can search for 0 with Google) in addition to a modifier pulled from
the @modifiers array. To generate the random page, you don’t, strictly
speaking, need something from the modifer array. However, it helps make
the page selection even more random.

The Code

#!/usr/local/bin/perl

goorandom.cgi

Creates a random Google query and redirects the browser to
the top/first result.

goorandom.cgi is called as a CGI without any form input

Your Google API developer's key
my $google key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

use strict;
use SOAP::Lite;

a list of search modifiers to be randomly chosen amongst for

inclusion in the query

my @modifiers = ("-site:com", "-site:edu”, "-site:net”,
“-site:org", "-site:uk", "-file:pdf",);

picking a random number and modifier combination
my $random number = int(rand(99999));
my $random modifier = $modifiers[int(rand(scalar(@modifiers)))];

Create a new SOAP object
my $google search = SOAP::lite->service("file:$google wdsl");

Query Google
my $results = $google search ->
doGoogleSearch(
$google_key, "$random number $random_modifier",
0, 1, "false", "", "false", "", "latini1", "latini"

)

With the combination of a number between 0 and 99999 and a modifier
from the @modifiers array, Google will get a list of search results, and from
that list you’ll get a “random” page. You could go higher with the numbers
if you wanted, but I wasn’t sure that this hack would consistently find num-
bers higher than 99999. (Zip Codes are five digits, so I knew a five-digit
search would find results more often than not.)

Google Web API Applications

' Getting Random Results (On Purpose)

redirect the browser to the URL of the top/first result
print "Location: $results->{resultElements}->[0]->{URL}\n\n";

Running the Hack

This hack runs as a CGI script; invoke it from your preferred web browser.

Hacking the Hack

There are a couple of ways to hack this hack.

Modifying the modifiers. You’ll notice each modifier in the @modifier array is
preceded by a negative (“exclude this”). You can, of course, add anything
you wish, but it’s highly recommended you keep to the negative theme;
including something like "computers” in the list gives you a chance—a slight
chance, but a chance nevertheless—of coming up with no search results at
all. The hack randomly excludes domains; here are a few more possibilities:
-intitle:queryword

-inurl:www

-inurl:queryword

-internet

-yahoo

-intitle:the

If you want to, you could create modifiers that use OR (]) instead of nega-
tives, and then slant them to a particular topic. For example, you could cre-
ate an array with a medical slant that looks like this:

(medicine | treatment | therapy)

(cancer | chemotherapy | drug)

(symptoms | “side effects")

(medical | research | hospital)

(inurl:edu | inurl:gov)
Using the OR modifier does not guarantee finding a search result like using a
negative does, so don’t narrow your possible results by restricting your
search to the page’s title or URL.

Adding a touch more randomness. The hack, as it stands, always picks the
first result. While its already highly unlikely you’ll ever see the same ran-
dom page twice, you can achieve a touch more randomness by choosing a
random returned result. Take a gander at the actual search itself in the
hack’s code:

my $results = $google_search ->

doGoogleSearch(

$google_key, "$random_number $random_modifier",
0, 1, "false", "", "false", "", "latin1", "latin1"

)

230 | Google Web API Applications

Restricting Searches to Top-Level Results

You see that 0 at the beginning of the fourth line? That’s the offset: the num-
ber of the first result to return. Change that number to anything between 0
and 999, and you’ll shift the results returned by that number—assuming, of
course, that the number you choose is smaller than the number of results for
the query at hand. For the sake of just about guaranteeing a result, it’s prob-
ably best to stick to numbers between 0 and 10. How about randomizing the
offset? Simply alter the code as follows (changes in bold):

picking a random number, modifier, and offset combination

my $random_number = int(rand(99999));

my $random modifier = $modifiers[int(rand(scalar(@modifiers)))];
my $random_offset = int(rand(10));

my $results = $google search ->
doGoogleSearch(
$google_key, "$random_number $random modifier",
$random_offset, 1, "false", "", "false", "", "latin1", "latini"

);

L Restricting Searches to Top-Level Results
#74 Separate out search results by the depth at which they appear in a site.

Google’s a mighty big haystack under which to find the needle you seek.
And there’s more, so much more; some experts believe that Google and its
ilk index only a bare fraction of the pages available on the Web.

Because the Web’s getting bigger all the time, researchers have to come up
with lots of different tricks to narrow down search results. Tricks and—
thanks to the Google API—tools. This hack separates out search results
appearing at the top level of a domain from those beneath.

Why would you want to do this?

* Clear away clutter when searching for proper names. If you're search-
ing for general information about a proper name, this is one way to clear
out mentions in news stories, etc. For example, the name of a political
leader like Tony Blair might be mentioned in a story without any sub-
stantive information about the man himself. But if you limited your
results to only those pages on the top level of a domain, you would
avoid most of those “mention hits.”

* Find patterns in the association of highly ranked domains and certain
keywords.

Google Web APl Applications | 231

Restricting Searches to Top-Level Results

* Narrow search results to only those bits that sites deem important
enough to have in their virtual foyers.

* Skip past subsites, the likes of home pages created by J. Random User
on their service provider’s web server.

The Code

#!/usr/local/bin/perl

gootop.cgi

Separates out top level and sub-level results
gootop.cgi is called as a CGI with form input

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

Number of times to loop, retrieving 10 results at a time
my $loops = 10;

use strict;

use SOAP::Lite;
use CGI qw/:standard *table/;

print
header(),
start_html("GooTop"),
h1("GooTop"),
start_form(-method=>"CGET"),
"Query: ", textfield(-name=>'query'),
' ',
submit(-name=>"submit', -value=>'Search'),
end_form(), p();

my $google search = SOAP::Lite->service("file:$google wdsl");

if (param('query')) {
my $list = { "toplevel' => [], 'sublevel' => [] };

for (my $offset = 0; $offset <= $loops*10; $offset += 10) {
my $results = $google_search ->
doGoogleSearch(
$google key, param('query'), $offset,
10, "false", "", "false", "", "latin1", "latim"

);

foreach (@{$results->{'resultElements'}}) {
push @{
$list->{ $_->{URL} =~ m!://[*/]+/2%!

232 | Google Web API Applications

Restricting Searches to Top-Level Results |

? 'toplevel' : 'sublevel' }
b

p(
b($_->{title}||'no title'), br(),
a({href=>$_->{URL}}, $_->{URL}), br(),
i($_->{snippet}||'no snippet')
);
}
}

print
h2('Top-Level Results'),
join("\n", @{$list->{toplevel}}),
h2('Sub-Level Results'),
join("\n", @{$list->{sublevel}});

print end_html;

Gleaning a decent number of top-level domain results means throwing out
quite a bit. It’s for this reason that this script runs the specified query a num-
ber of times, as specified by my $loops = 10;, each loop picking up 10
results, some subset being top-level. To alter the number of loops per query,
simply change the value of $loops. Realize that each invocation of the script
burns through $loops number of queries, so be sparing and don’t bump that
number up to anything ridiculous—even 100 will eat through a daily alot-
ment in just 10 invocations.

The heart of the script, and what differentiates it from your average Google
API Perl script [Hack #50], lies in this snippet of code:
push @{
$list->{ $_->{URL} =~ m!://[*/]+/2%!
? 'toplevel’ : 'sublevel' }
}

What that jumble of characters is scanning for is :// (as in http://) fol-
lowed by anything other than a / (slash), thereby sifting between top-level
finds (e.g., http://www.berkeley.edu/welcome.html) and sublevel results (e.g.,
http://www.berkeley.edu/students/john_doe/my_dog.html). 1f you're Perl
savvy, you may have noticed the trailing /2$; this allows for the eventuality

that a top-level URL ends with a slash (e.g., http://www.berkeley.edu/), as is
often true.

Running the Hack

This hack runs as a CGI script. Figure 6-16 shows the results of a search for
non-gmo (Genetically Modified Organisms, that is).

Google Web API Applications | 233

Query:jnongmo
Top Level Results

The Non-GMO Source

genetically
modified foods have created a global niche market for crops and

Sub-Level Results

NON-GMO4 x §2++4 4 “i3d;jee 14

http/Awww .kanex.or.jp/MARKET/PRICENON.HTM

NON-GMOd & §é-(NON-GMO Soybeans) Hil/43a, ' af af faf—

S (Rtnn Hiah\ZEET 71/485 ' 4

Figure 6-16. GooTop search for non-gmo

Hacking the Hack

There are a couple of ways to hack this hack.

More depth. Perhaps your interests lie in just how deep results are within a
site or sites. A minor adjustment or two to the code, and you have results
grouped by depth:

N foreach (@{$results->{'resultElements'}}) {
push @{ $list[scalar (split(/\//, $_->{URL} . " ') -3)11},

p
b($_->{title}||'no title'), br(),
a({href=>%_->{URL}}, $_->{URL}), br(),
i($_->{snippet}||'no snippet’)
)
}
}

for my $depth (1..$#list) {
print h2("Depth: $level™);
ref $list[$depth] eq 'ARRAY' and print join "\n",@{$list[$depth]};

234 | Google Web API Applications

Restricting Searches to Top-Level Results

}
}

print end_html;
Figure 6-17 shows that non-gmo search again using the depth hack.

[i (TR —— -
GooTop

ngy;@n_-gm |Surch]

Level: 1

GMO vs. Non-GMO: MAlglmtl
JSwrww.

"GMO vs. Non-GMO": mmmwpmw "So... v
(Hudson

Institute, 1995) Welcome Page | Lumen Foods' FAQ Page: Non-GMO
Article.

The Non-GMO Source

http://www.non-gmosource.com/

Realize new market opportunities producing non-GMO Consumer
concerns about

modified foods have created a global niche market for crops and

N

Figure 6-17. non-gmo search using depth hack

Query tips. Along with the aforementioned code hacking, here are a few
query tips to use with this hack:

* Consider feeding the script a date range [Hack #11] query to further nar-
row results.

* Keep your searches specific, but not too much so for fear of turning up
no top-level results. Instead of cats, for example, use "burmese cats",
but don’t try "burmese breeders” feeding.

* Try the link: [in “The Special Syntaxes” in Chapter 1] syntax. This is a nice use of a
syntax otherwise not allowed in combination [Hack #8] with any others.

* On occasion, intitle: works nicely with this hack. Try your query
without special syntaxes first, though, and work your way up, making
sure you're getting results after each change.

Google Web API Applications | 235

Searching for Special Characters

Searching for Special Characters
Search for the tilde and other special characters in URLs.

1475

Google can find lots of different things, but at this writing, it can’t find special
characters in its search results. That’s a shame, because special characters can
come in handy. The tilde (~), for example, denotes personal web pages.

This hack takes a query from a form, pulls results from Google, and filters
the results for the presence of several different special characters in the URL,
including the tilde.

Why would you want to do this? By altering this hack slightly (see “Hacking
the Hack”) you could restrict your searches to just pages with a tilde in the
URL, an easy way to find personal pages. Maybe you’re looking for dynami-
cally generated pages with a question mark (?) in the URL; you can’t find
these using Google by itself, but you can thanks to this hack. And of course
you can turn the hack inside out and not return results containing ~, ?, or
other special characters. In fact, this code is more of a beginning than an end
unto itself; you can tweak it in several different ways to do several different

things.

The Code

#!/usr/local/bin/perl
aunt_tilde.pl
Finding special characters in Google result URLs

Your Google API developer's key
my $google_key="insert key here';

Number of times to loop, retrieving 10 results at a time
my $loops = 10;

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

use strict;

use CGI qw/:standard/;
use SOAP::Lite;

print
header(),
start_html("Aunt Tilde"),
h1("Aunt Tilde"),
start_form(-method=>'GET'),
‘Query: ', textfield(-name=>'query'),

236 | Google Web API Applications

Searching for Special Characters :

br(),

‘Characters to find: °,

checkbox_group(
-name=>'characters’,
-values=>[qw/ ~ @ 2 ! /],
-defaults=>[qw/ ~ /]

)5

br(),

submit (-name=>"'submit', -value=>'Search'),

end_forn(), p();

if (param('query')) {

Create a regular expression to match preferred special characters
my $special_regex = "[\\' . join('\\', param('characters')) . ']';

my $google search = SOAP::Lite->service("file:$google wdsl");

for (my $offset = 0; $offset <= $loops*10; $offset += 10) {
my $results = $google_search ->

doGoogleSearch(
$google_key, param('query'), $offset, 10, "false", "", "false",
“*, "latin1", "latim1”

);
last unless @{$results->{resultElements}};
foreach my $result (@{$results->{'resultElements'}}) {

Output only matched URLs, highlighting special characters in red

my $url = $result->{URL};

$url =~ s!($special_regex)!$1!g and
print

p(
b(a({href=>$result->{URL}},$result->{title}||'no title')), br(),

$url, br(),

i($result->{snippet}|| 'no snippet')

);
}

}

print end_html;
}

Hacking the Hack

There are two main ways you can change this hack.

Choosing special characters. You can easily alter the list of special characters
you're interested in by changing one line in the script:

-values=>[qw/ ~ @ ? | /],

Google Web API Applications | 237

- Digging Deeper into Sites

Simply add or remove special characters from the space-delimited list
between the / (forward slash) characters. If, for example, you want to add &
(ampersands) and z (why not?), while dropping ? (question marks), that line
of code should look be:

-values=>[qw/ ~ @ ! & 2z /],
(Don’t forget those spaces between characters in the list.)
g P

Excluding special characters. You can just as easily decide to exclude URLs
containing your special characters as include them. Simply change the =~
(read: does match) in this line:

$url =~ s!($special_regex)!$1!g and
to !~ (read: does not match), leaving:
$url 1~ s!($special_regex)!$1!g and

Now, any result containing the specific characters will not show up.

ﬂ Digging Deeper into Sites
76 Dig deeper into the hierarchies of web sites matching your search criteria.

One of Google’s big strengths is that it can find your search term instantly
and with great precision. But sometimes you’re not interested so much in
one definitive result as in lots of diverse results; maybe you even want some
that are a bit more on the obscure side.

One method I've found rather useful is to ignore all results shallower than a
particular level in a site’s directory hierarchy. You avoid all the clutter of
finds on home pages and go for subject matter otherwise often hidden away
in the depths of a site’s structure. While content comes and gos, ebbs and
flows from a site’s main focus, it tends to gather in more permanent locales,
categorized and archived, like with like.

This script asks for a query along with a preferred depth, above which
results are thrown out. Specify a depth of four and your results will come
only from http://example.com/a/b/c/d, not /a, /a/b/, or /a/b/c.

Because you’re already limiting the kinds of results you see, it’s best to use
more common words for what you’re looking for. Obscure query terms can
often cause absolutely no results to turn up.

238 | Google Web API Applications

Digging Deeper into Sites

S

The default number of loops, retrieving 10 items apiece, is
set to 50. This is to assure you glean some decent number of
results, because many will be tossed. You can, of course,
alter this number but bear in mind that you’re using that
number of your daily quota of 1,000 Google API queries per
developer's key.

The Code

#!/usr/local/bin/perl

deep_blue g.cgi

Limiting search results to a particular depth in a web
site's hierarchy.

deep_blue_g.cgi is called as a CGI with form input

Your Google API developer's key
my $google_key="insert key here’;

Location of the GoogleSearch WSDL file
my $google wdsl = “./GoogleSearch.wsdl";

Number of times to loop, retrieving 10 results at a time
my $loops = 10;

use SOAP::Lite;
use CGI qw/:standard *table/;

print
header(),
start_html("Fishing in the Deep Blue G"),
hi("Fishing in the Deep Blue G"),
start_form(-method=>"GET"),
'Query: ', textfield(-name=>'query'),
br(),
'Depth: ', textfield(-name=>'depth', -default=>4),
br(),
submit(-name=>'submit', -value=>'Search'),
end_form(), p();

Make sure a query and numeric depth are provided
if (param('query') and param('depth') =~ /\d+/) {

Create a new SOAP object
my $google_search = SOAP::Lite->service("file:$google wdsl");

for (my $offset = 0; $offset <= $loops*10; $offset += 10) {
my $results = $google_search ->
doGoogleSearch(

Google Web API Applications

5 Digging Deeper into Sites

$google key, param('query’), $offset, 10, “false", "", “false",
"", "latin1", "latin1"

)i
last unless @{$results->{resultElements}};
foreach my $result (@{$results->{'resultElements'}}) {

Determine depth
my $url = $result->{URL};
$url =~ si™\w+://|/$!1g;

Output only those deep enough
(split(/\//, $url) - 1) >= param('depth') and
print
p(
b(a({href=>$result->{URL}},$result->{title}||'no title')), br(),
$result->{URL}, br(),
i($result->{snippet}||'no snippet')
)i
}
}

print end html;
}

Running the Hack

This hack runs as a CGI script. Point your browser at it, fill out query and
depth fields, and click the “Submit” button.

Figure 6-18 shows a query for "Jacques Cousteau”, restricting results to a
depth of 6—that’s six levels down from the site’s home page. You’ll notice
some pretty long URLs in there.

Hacking the Hack

Perhaps you're interested in just the opposite of what this hack provides:
you want only results from higher up in a site’s hierarchy. Hacking this hack
is simple enough: swap in a < (less than) symbol instead of the > (great than)
in the following line:

(split(/\//, $url) - 1) <= param('depth') and

See Also

* Restricting Searches to Top-Level Results [Hack #74]

240 | Google Web API Applications

Summarizing Results by Domain

o e
! —) _3 | @ http://localhost/cgi-bin/deep_blue_g.cgizquery= B
Back Forward Rdmd Stop Location Sidebar

Fishing in the Deep Blue G

Query: [Jacques Cousteau” |

Frmfm: 'IdeauWaH‘hﬂmmmmmbgm
-- today almost impossible to find -- the sinewy French explorer took us ...

hitp://www amazon, mazon comiexaslobidoy/A SIN/O8 1098068 .

EmWrmbymscmmmercmr_Jm
ousteau

describes this world in an engrossing, almost poetic fashion. ...

Figure 6-18. A search for “Jacques Cousteau”, restricting results to six levels down

Summarizing Results by Domain

#77 Getting an overview of the sorts of domains (educational, commercial,
foreign, and so forth) found in the results of a Google query.

You want to know about a topic, so you do a search. But what do you have?
A list of pages. You can’t get a good idea of the types of pages these are
without taking a close look at the list of sites.

This hack is an attempt to get a “snapshot” of the types of sites that result
from a query. It does this by taking a “suffix census,” a count of the differ-
ent domains that appear in search results.

This is most ideal for running link: queries, providing a good idea of what
kinds of domains (commercial, educational, military, foreign, etc.) are link-
ing to a particular page.

You could also run it to see where technical terms, slang terms, and unusual
words were turning up. Which pages mention a particular singer more

Google Web API Applications | 241

3

~ Summarizing Results by Domain

often? Or a political figure? Does the word “democrat” come up more often
on .com or .edu sites?

Of course this snapshot doesn’t provide a complete inventory; but as over-
views go, it’s rather interesting.

The Code

#!/usr/local/bin/perl

suffixcensus.cgi

Generates a snapshot of the kinds of sites responding to a
query. The suffix is the .com, .net, or .uk part.

suffixcensus.cgi is called as a CGI with form input

Your Google API developer's key
my $google key='insert key here';

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

Number of times to loop, retrieving 10 results at a time
my $loops = 10;

use SOAP::Lite;
use CGI gw/:standard *table/;

print
header(),
start_html("SuffixCensus™),
h1("SuffixCensus"),
start_form(-method=>'GET"),
'Query: ', textfield(-name=>'query'),
' ',
submit(-name=>"submit’, -value=>'Search'),
end_form(), p();

if (paran(’query’))
my $google_search = SOAP::Lite->service("file:$google wdsl");
my %suffixes;

for (my $offset = 0; $offset <= $loops*10; $offset += 10) {

my $results = $google_search ->
doGoogleSearch(
$google key, param('query'), $offset, 10, "false", "", “false",
"*, "latim1", "latin1"

)i
last unless @{$results->{resultElements}};

map { $suffixes{ ($_->{URL} =~ mit://.+2\.(\w{2,4})/#)[0] }++ }
@{$results->{resultElements}};

242 | Google Web API Applications

Summarizing Results by Domain

print
h2('Results: '), p(),
start_table({cellpadding => 5, cellspacing => 0, border => 1}),
map({ Tr(td(uc $_),td($suffixes{$_})) } sort keys %suffixes),
end_table();
}

print end_html();

Running the Hack

This hack runs as a CGI script. Install it in your cgi-bin or appropriate direc-
tory, and point your browser at it.

The Results

Searching for the prevalence of "soda pop” by suffix finds, as one might
expect, the most mention on .coms, as Figure 6-19 shows.

Figure 6-19. Prevalence of “soda pop” by suffix

Google Web APl Applications | 243

Summarizing Results by Domain

Hacking the Hack
There are a couple of ways to hack this hack.

Going back for more. This script, by default, visits Google 10 times, grabbing
the top 100 (or fewer, if there aren’t as many) results. To increase or
decrease the number of visits, simply change the value of the $1oops variable
at the top of the script. Bear in mind, however, that making $loops = 50
might net you 500 results, but you're also eating quickly into your daily alot-
ment of 1,000 Google API queries.

Comma-separated. It’s rather simple to adjust this script to run from the
command line and return a comma-separated output suitable for Excel or
your average database. Remove the starting HTML, form, and ending
HTML output, and alter the code that prints out the results. In the end, you
come to something like this (changes in bold):

#!/usr/local/bin/perl

suffixcensus_csv.pl

Generates a snapshot of the kinds of sites responding to a

query. The suffix is the .com, .net, or .uk part.
usage: perl suffixcensus_csv.pl query="your query” > results.csv

Your Google API developer's key
my $google_key="insert key';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

Number of times to loop, retrieving 10 results at a time
my $loops =1;

use SOAP::Lite;
use CGI qw/:standard/;

param(’query"’)
or die gq{usage: suffixcensus_csv.pl query="{query}" [> results.csv]\n};

print qq{"suffix","count"\n};
my $google_search = SOAP::lLite->service("file:$google wdsl");
my #suffixes;
for (my $offset = 0; $offset <= $loops*10; $offset += 10) {
my $results = $google_search ->
doGoogleSearch(
$google_key, param(’query'), $offset, 10, "false", "", "false",

"t "latin1", "latinm1"

s

244 | Google Web API Applications

Scraping Yahoo! Buzz for a Google Search

last unless @{$results->{resultElements}};

map { $suffixes{ ($_->{URL} =~ m#://.+2\.(\w{2,4})/#)[0] }++ }
@{$results->{resultElements}};
}

print map { qq{"$_", "$suffixes{$_}"\n} } sort keys Zsuffixes;
Invoke the script from the command line like so:
$ perl suffixcensus_csv.pl query="query" > results.csv

Searching for mentions of “colddrink,” the South African version of “soda

pop,” sending the output straight to the screen rather than a results.csv file,
looks like this:

$ perl suffixcensus_csv.pl query="colddrink"
"suffix", "count”

"com", "12"

"info", "1"

"net", "1"

nzall’ IP6N

Scraping Yahoo! Buzz for a Google Search

E # 78 A proof of concept hack that scrapes the buzziest items from Yahoo! Buzz
and submits them to a Google search.

No web site is an island. Billions of hyperlinks link to billions of docu-
ments. Sometimes, however, you want to take information from one site and
apply it to another site.

Unless that site has a web service API like Google’s, your best bet is scrap-
ing. Scraping is where you use an automated program to remove specific bits
of information from a web page. Examples of the sorts of elements people
scrape include: stock quotes, news headlines, prices, and so forth. You name
it and someone’s probably scraped it.

There’s some controversy about scraping. Some sites don’t mind it, while
others can’t stand it. If you decide to scrape a site, do it gently; take the min-
imum amount of information you need and, whatever you do, don’t hog the
scrapee’s bandwidth.

So, what are we scraping?

Google has a query popularity page; it’s called Google Zeitgeist (http:/www.
google.com/press/zeitgeist.html). Unfortunately, the Zeitgeist is only updated
once a week and contains only a limited amount of scrapable data. That’s
where Yahoo! Buzz (http://buzz.yahoo.com/) comes in. The site is rich with
constantly updated information. Its “Buzz Index” keeps tabs on what’s hot in
popular culture: celebs, games, movies, television shows, music, and more.

Google Web API Applications | 245

- Scraping Yahoo! Buzz for a Google Search

This hack grabs the buzziest of the buzz, top of the “Leaderboard,” and
searches Google for all it knows on the subject. And to keep things cur-
rent, only pages indexed by Google within the past few days [Hack #11] are

considered.
This hack requires additional Perl modules: Time::JulianDay
(http://search.cpan.org/search’query=Time%3A%3AJulianDay)
and LWP::Simple (http://search.cpan.org/
search’query=LWP%3A%3ASimple). It won’t run without
them.

The Code

#!/usr/local/bin/perl

buzzgle.pl

Pull the top item from the Yahoo Buzz Index and query the last
three day's worth of Google's index for it

Usage: perl buzzgle.pl

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

Number of days back to go in the Google index
my $days_back = 3;

use strict;

use SOAP::Llite;

use LWP::Simple;

use Time::JulianDay;

Scrape the top item from the Yahoo Buzz Index

Grab a copy of http://buzz.yahoo.com

my $buzz_content = get("http://buzz.yahoo.com/")
or die "Couldn't grab the Yahoo Buzz: $!";

Find the first item on the Buzz Index list

my($buzziest) = $buzz_content =~ m!<TR BGCOLOR=white.+?1.+?<a href="http://
search.yahoo.com/search\?p=.+?8cs=bz">(.+?)!i;

die "Couldn’t figure out the Yahoo! buzz\n" unless $buzziest;

Figure out today's Julian date
my $today = int local julian_day(time);

Build the Google query
my $query = "\"$buzziest\" daterange:" . ($today - $days_back) . "-$today";

246 | Google Web API Applications

Scraping Yahoo! Buzz for a Google Search

print
"The buzziest item on Yahoo Buzz today is: $buzziest\n",
"Querying Google for: $query\n",
"Results:\n\n";

Create a new SOAP::Lite instance, feeding it GoogleSearch.wsdl
my $google_search = SOAP::lite->service("file:$google wdsl");

Query Google
my $results = $google_search -»
doGoogleSearch(
$google key, $query, 0, 10, "false", "", "false",
", "latin1", "latinm1"

);

No results?
@{$results->{resultElements}} or die "No results";

Loop through the results
foreach my $result (@{$results->{'resultElements'}}) {
my $output =
join "\n",
$result->{title} || "no title",
$result->{URL},
$result->{snippet} || 'no snippet’,
"\n";
$output =~ sl<.+2?>!1g; # drop all HTML tags
print $output;

Running the Hack

The script runs from the command line without need of arguments of any
kind. Probably the best thing to do is to direct the output to a pager (a com-
mand-line application that allows you to page through long output, usually
by hitting the spacebar), like so:

% perl buzzgle.pl | more
Or you can direct the output to a file for later perusal:
% perl buzzgle.pl > buzzgle.txt

As with all scraping applications, this code is fragile, subject to breakage if
(read: when) HTML formatting of the Yahoo! Buzz page changes. If you find
you have to adjust to match Yahoo!’s formatting, you’ll have to alter the reg-
ular expression match as appropriate:
my($buzziest) = $buzz_content =~ m!<TR BGCOLOR=white.+?1.+?<a href="http
://search.yahoo.com/search\?p=.+28cs=bz">(.+?)11;
Regular expressions and general HTML scraping are beyond the scope of
this book. For more information, I suggest you consult O’Reilly’s Perl and

Google Web AP Applications | 247

Scraping Yahoo! Buzz for a Google Search

LWP (http://www.oreilly.com/catalog/perllwp/) or Mastering Regular Expres-
sions (http://www.oreilly.com/catalog/regex/).

The Results

At the time of this writing—and probably for some time yet to come—musi-
cal sensation, Eminem, is all the rage.

% perl buzzgle.pl | less

The buzziest item on Yahoo Buzz today is: Eminem

Querying Google for: "Eminem" daterange:2452593-2452596
Results:

Eminem World

http://www.eminemworld.com/

Eminem World specializing in Eminem News and Information. With

Pictures, Discogr aphy, Lyrics ... your #1 Eminem Resource. Eminem
World, ...

Eminem

http://www.eminem.com/frameset.asp?PageName=eminem

no snippet

Eminem Planet - Your Ultimate Resource

http://www.eminem-planet.com/

Eminem Planet - A Creat Resource about the Real Slim Shady. .:8 Mile .:News
.:Bi

ography ... More News. ::Order Eminem's book. Click Here to Check ...

Hacking the Hack

Here are some ideas for hacking the hack:

The program as it stands returns 10 results. You could change that to
one result and immediately open that result instead of returning a list.
Bravo, you've just written I'm Feeling Popular!, as in Google’s I'm Feel-
ing Lucky!

This version of the program searches the last three days of indexed
pages. Because there’s a slight lag in indexing news stories, [would index
at least the last two days” worth of indexed pages, but you could extend
it to seven days or even a month. Simply change my $days_back = 3;,
altering the value of the $days_back variable.

You could create a “Buzz Effect” hack by running the Yahoo! Buzz
query with and without the date-range limitation. How do the results
change between a full search and a search of the last few days?

Yahoo!’s Buzz has several different sections. This one looks at the Buzz
summary, but you could create other ones based on Yahoo!’s other buzz
charts (television, http://buzz.yahoo.com/television/, for instance).

248

| Google Web API Applications

!

Measuring Google Mindshare

Measuring Google Mindshare
79 Measure the Google mindshare of a particular person within a query domain.

Based on an idea by author Steven Johnson (http://www.stevenberlinjohnson/),
this hack determines the Google mindshare of a person within a particular set
of Google queried keywords. What's Willy Wonka’s Google mindshare of
“Willy”? What percentage of “weatherman” does Al Roker hold? Who has the
greater “The Beatles” Google mindshare, Ringo Starr or Paul McCartney?
More importantly, what Google mindshare of your industry does your com-
pany own?

Google mindshare is calculated as follows: determine the size of the result
set for a keyword or phrase. Determine the result set size for that query
along with a particular person. Divide the second by the first and multiply
by 100, yielding percent Google mindshare. For example: A query for Willy
yields about 1,590,000 results. "Willy Wonka" +Willy finds 66,700. We can
conclude—however unscientifically—that Willy Wonka holds roughly a 4%
(66,700 / 1,590,000 x 100) Google mindshare of Willy.

Sure it’s a little silly, but there’s probably a grain of truth in it somewhere.

The Code

#!/usr/local/bin/perl

google mindshare.cgi

This implementation by Rael Dornfest

http://www.Taelity.org/lang/perl/google/googleshare/

Based on an idea by Steven Johnson

http://www.stevenberlinjohnson.com/movabletype/archives/000009.html

Your Google API developer's key
my $google_key='insert key here';

Location of the GoogleSearch WSDL file
my $google_wdsl = "./GoogleSearch.wsdl";

use SOAP::Lite;
use CGI qw/:standard *table/;

print
header(),
start_html("Googleshare Calculator"),
h1("Googleshare Calculator"),
start_form(-method=>'CET"),
"Query: ‘, br(), textfield(-name=>'query'),
p(),
'Person: ',br(), textfield(-name=>'person'),

p(),

Google Web API Applications | 249

- Measuring Google Mindshare

submit(-name=>'submit’, -value=»>'Calculate'),
end_form(), p();

if (param('query') and param('person')) {
my $google_search = SOAP::Lite->service("file:$google wdsl");

Query Google for they keyword, keywords, or phrase
my $results = $google_search ->
doGoogleSearch(
$google_key, .param('query').'"", o, 1, "false", "", "false",
"", "latin1", "latin1"
)i

Save the results for the Query
my $query_count = $results->{estimatedTotalResultsCount};

my $results = $google search ->
doGoogleSearch(

$google_key, '+"'.param(‘'query').'" +"'.param('person’)."'"', 0, 1,
"false", "", "false", "", "latin1", "latinm1"
)
Save the results for the Query AND Person
my $query_person_count = $results->{estimatedTotalResultsCount};

print
p(
b(sprintf "%s has a %.2f%% googleshare of ¥s",

param('person'),
($query_person_count / $query _count * 100),
"', param('query').'""

}

print end_html();

Running the Hack

Visit the CGI script in your browser. Enter a query and a person. The name
doesn’t necessarily have to be a person’s full name. It can be a company,
location, just about any proper noun, or anything, actually. Click the “Cal-
culate” button and enjoy. Figure 6-20 shows the Willy Wonka example.

Fun Hack Uses

You can’t do too many practical things with this hack, but you can have a
lot of fun with it. Playing “unlikely percentages” is fun; see if you can find a
name/word combo that gets a higher percentage than other percentages you

250 | Google Web API Applications

Comparing Google Results with Those of Other Search Engines

— i &,3 em”wmu .,m —=

Google Mindshare Calculator

Person:
gwllv Wonka

(catcuize)
Willy Wonka has a 4.82% googleshare of " Willy"

Document: Done ﬁ

Figure 6-20. Google mindshare for Willy Wonka

would consider more likely. Here are the answers to the questions posted at
the beginning of this hack, and more:

Willy Wonka has a 4.82% Google mindshare of “Willy.”

Al Roker has a 1.45% Google mindshare of “weatherman.”
Ringo Starr has a 1.69% Google mindshare of “The Beatles.”
Paul McCartney has a 3.71% Google mindshare of “The Beatles.”
Red Hat has a 3.63% Google mindshare of “Linux.”

Microsoft has a 4.37% Google mindshare of “Linux.”

Comparing Google Results with Those of

ﬂ 30 Other Search Engines

Comparing Google search results with results from other search engines.

True Google fanatics might not like to think so, but there’s really more than
one search engine. Google’s competitors include the likes of AltaVista,
AlltheWeb, and Teoma.

Equally surprising to the average Google fanatic is the fact that Google
doesn’t index the entire Web. There are, at the time of this writing, over 2
billion web pages in the Google index, but that’s just a fraction of the Web.
You'd be amazed how much non-overlapping content there is in each search
engine. Some queries that bring only a few results on one search engine
bring plenty on another search engine.

Google Web API Applications | 251

Comparing Google Results with Those of Other Search Engines

This hack gives you a program that compares counts for Google and several
other search engines, with an easy way to plug in new search engines that
you want to include. This version of the hack searches different domains for
the query, in addition to getting the full count for the query itself.

This hack requires the LWP::Simple (http://search.cpan.org/
search?query=LWP%3A%3ASimple) module to run.

The Code

#!/usr/local/bin/perl
google_compare.cgi
Compares Coogle results against those of other search engines

Your Google API developer's key
my $google_key='"insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

use strict;

use SOAP::Lite;
use LWP::Simple qw(get);
use CGI qw{:standard};

my $googleSearch = SOAP::Lite->service("file:$google_wdsl");

setup our browser output.
print "Content-type: text/html\n\n";
print "<html><title>Google Compare Results</title><body>\n";

ask and we shell receive.

my $query = param('query');

unless ($query) {
print "<h1>No query defined.</h1></body></html>\n\n";
exit; # If there's no query there's no program.

}

spit out the original before we encode.
print "<h1>Your original query was '$query'.</hi>\n";

$query =~ s/\s/\+/g ; #changing the spaces to + signs
$query =~ s/\"/%22/g; #changing the quotes to %22

Create some hashes of queries for various search engines.

We have four types of queries ("plain", "com", "edu", and "org"),
and three search engines ("Google", "AlltheWeb", and "Altavista".
Each engine has a name, query, and regular expression used to

scrape the results.

252 | Google Web API Applications

Comparing Google Results with Those of Other Search Engines

my $query hash = {
plain => {
Google => { name => "Google", query => $query, },
AlltheWeb => {
name => "AlltheWeb",
regexp => "Displaying results .*<\/b> of (.*)<\/b>",
query => "http://www.alltheweb.com/search?cat=web&q=$query”,

Altavista => {
name => "Altavista”,
regexp => "We found (.*) results”,
query => "http://www.altavista.com/sites/search/web?q=$query”,

}
}J
com => {
Google => { name => "Google", query => "$query site:com”, },
AlltheWeb => {
name => "AlltheWeb",
regexp => "Displaying results .*<\/b> of (.*)<\/b>",
query => "http://www.alltheweb.com/
search?cat=web&g=$query+domain%3Acom"”,
}
Altavista => {
name => "Altavista", regexp => "We found (.*) results”,
query => "http://www.altavista.com/sites/search/
web?g=$query+domain%3Acom",

b
org => {
Google => { name => "Google", query => "$query site:org", },
AlltheWeb => {
name => "AlltheWeb”,
regexp => "Displaying results .*<\/b> of (.*)<\/b>",
query => "http://www.alltheweb.com/
search?cat=web8g=$query+domain%3Aorg”,

3
Altavista => {
name => "Altavista", regexp => "We found (.*) results”,
query => "http://www.altavista.com/sites/search/
web?q=$query+domain¥3Aorg",

}
e
net => {
Google => { name => "Google", query => "$query site:net”, },
AlltheWeb => {
name => "AlltheWeb”,
regexp => "Displaying results .*<\/b> of (.*)<\/b>",
query => "http://www.alltheweb.com/
search?cat=web8iq=$query+domain¥3Anet”,
b
Altavista => {
name => "Altavista", regexp => "We found (.*) results",
query => "http://www.altavista.com/sites/search/
web?g=$query+domain%3Anet”,

Google Web APl Applications | 253

Comparing Google Results with Those of Other Search Engines

now, we loop through each of our query types,
under the assumption there's a matching
hash that contains our engines and string.
foreach my $query type (keys (%$query hash)) {
print "<h2>Results for a '$query type' search:</h2>\n";

now, loop through each engine we have and get/print the results.
foreach my $engine (values %{$query hash->{$query type}}) {
my $results_count;

if this is Google, we use the API and not port 80.
if ($engine->{name} eq "Google") {
my $result = $googleSearch->doGoogleSearch(
$google_key, $engine->{query}, 0, 1,
"false", "", "false", "", "latin1", "latin1");
$results_count = $result->{estimatedTotalResultsCount};
the google api doesn't format numbers with commas.
my $rresults_count = reverse $results_count;
$rresults_count =~ s/(\d\d\d)(?=\d)(2!\d*\.)/$1,/g;
$results_count = scalar reverse $rresults count;

}

it's not google, so we GET like everyone else.
elsif ($engine->{name} ne "Google") {
my $data = get($engine->{query}) or print "ERROR: $!";
$data =~ /$engine->{regexp}/; $results_count = $1 || 0;
}

and print out the results.
print "$engine->{name}: $results_count
\n";

Running the Hack

This hack runs as a CGI script, called from your web browser as: google
compare.cgi?query=your query keywords.

Why?

You might be wondering why you would want to compare result counts
across search engines? It’s a good idea to follow what different search
engines offer in terms of results. While you might find that a phrase on one
search engine provides only a few results, another might return results a-
plenty. It makes sense to spend your time and energy using the latter for the
research at hand.

—Tara Calishain and Morbus Iff

254 | Google Web API Applications

I

SafeSearch Certifying URLs

SafeSearch Certifying URLs

Feed URLs to Google's SafeSearch to determine whether or not they point at
questionable content.

Only three things in life are certain: death, taxes, and accidentally visiting a
once family-safe web site that now contains text and images that would
make a horse blush.

As you probably know if you’ve ever put up a web site, domain names are
registered for finite lengths of time. Sometimes registrations accidentally
expire; sometimes businesses fold and allow the registrations to expire.
Sometimes other companies take them over.

Other companies might just want the domain name, some companies want
the traffic that the defunct site generated, and in a few cases, the new own-
ers of the domain name try to hold it “hostage,” offering to sell it back to the
original owners for a great deal of money. (This doesn’t work as well as it
used to because of the dearth of Internet companies that actually have a
great deal of money.)

When a site isn’t what it once was, that’s no big deal. When it’s not what it
once was and is now rated X, that’s a bigger deal. When it’s not what it once

was, is now rated X, and is on the link list of a site you run, that’s a really
big deal.

But how to keep up with all the links? You can go visit every link periodi-
cally and see if it’s still okay, or you can wait for the hysterical emails from
site visitors, or you can just not worry about it. Or you can put the Google
API to work.

This program lets you give provide a list of URLs and check them in Goo-
gle’s SafeSearch Mode. If they appear in the SafeSearch mode, they’re proba-
bly okay. If they don’t appear, they’re either not in Google’s index or not
good enough to pass Google’s filter. The program then checks the URLs
missing from a SafeSearch with a nonfiltered search. If they do not appear in
a nonfiltered search, they’re labeled as unindexed. If they do appear in a
nonfiltered search, they’re labeled as “suspect.”

Danger Will Robinson

While Google’s SafeSearch filter is good, it’s not infallible. (I have yet to see
an automated filtering system that is infallible.) So if you run a list of URLs
through this hack and they all show up in a SafeSearch query, don’t take
that as a guarantee that they’re all completely inoffensive. Take it merely as
a pretty good indication that they are. If you want absolute assurance,
you’re going to have to visit every link personally and often.

Google Web API Applications | 255

SafeSearch Certifying URLs

Here’s a fun idea if you need an Internet-related research
project. Take 500 or so domain names at random and run
this program on the list once a week for several months, sav-
ing the results to a file each time. It'd be interesting to see
how many domains/URLs end up being filtered out of
SafeSearch over time.

The Code

#!/usr/local/bin/perl

suspect.pl

Feed URLs to a Google SafeSearch. If inurl: returns results, the
URL probably isn't questionable content. If inurl: returns no
results, either it points at questionable content or isn't in

the Google index at all.

Your Google API developer's key
my $google_key = 'put your key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

use strict;

use SOAP::Lite;

$|++; # turn off buffering

my $google search = SOAP::Lite->service("file:$google wdsl");

CSV header
print qq{"url","safe/suspect/unindexed","title"\n};

while (my $url = <) {
chomp $url;
$url =~ si™M\w+?://11;
$url =~ s!www\.!!;

SafeSearch

my $results = $google search ->
doGoogleSearch(
$google_key, "inurl:$url”, o, 10, "false", "", “true",
"", "latin1", "latin1”

);
print qq{"$url",};

if (grep /$url/, map { $_->{URL} } @{$results->{resultElements}}) {
print qq{"safe"\n};

else {
unSafeSearch

256 | Google Web API Applications

SafeSearch Certifying URLs

my $results = $google_search -»>

doGoogleSearch(
$google key, "inurl:$url", o, 10, "false", "", "false",
“*, "latin1", "latini1"

s

Unsafe or Unindexed?
print (
(scalar grep /$url/, map { $_->{URL} } @{$results->{resultElements}})
? qq{"suspect™\n}
: gq{"unindexed"\n}
);

Running the Hack

To run the hack, you’ll need a text file that contains the URLs you want to
check, one line per URL. For example:

http://www.oreilly.com/catalog/essblogging/

http://www. xxxxxxxxxx.com/preview/home. htm

hipporhinostricow.com
The program runs from the command line. Enter the name of the script , a
less-than sign, and the name of the text file that contains the URLs you want
to check. The program will return results that look like this:

% perl suspect.pl < urls.txt

"url","safe/suspect/unindexed"”

"oreilly.com/catalog/essblogging/”,"safe"

" XXXXXXXXXX . com/preview/home .htm", "suspect”

"hipporhinostricow.com","unindexed"”
The first item is the URL being checked. The second is it’s probable safety
rating as follows:

safe
The URL appeared in a Google SafeSearch for the URL.

suspect
The URL did not appear in a Google SafeSearch, but did in an unfil-
tered search.

unindexed
The URL appeared in neither a SafeSearch nor unfiltered search.

You can redirect output from the script to a file for import into a spread-
sheet or database:

% perl suspect.pl < urls.txt > urls.csv

Google Web API Applications | 257

- Syndicating Google Search Results

Hacking the Hack

You can use this hack interactively, feeding it URLs one at a time. Invoke
the script with perl suspect.pl, but don’t feed it a text file of URLs to
check. Enter a URL and hit the return key on your keyboard. The script will
reply in the same manner as it did when fed multiple URLs. This is handy
when you just need to spot-check a couple of URLs on the command line.
When you’re ready to quit, break out of the script using Ctrl-D under Unix
or Ctrl-Break on a Windows command line.

Here’s a transcript of an interactive session with suspect.pl:

% perl suspect.pl
"url","safe/suspect/unindexed", "title"
http://www.oreilly.com/catalog/essblogging/
"oreilly.com/catalog/essblogging/","safe"
http: //wwmi . 00000000xx . com/preview/home . htm
"XXXXXXXXXX . com/preview/home.htm", "suspect"
hipporhinostricow.com
"hipporhinostricow.com”,"unindexed"

~d

%

E ol Syndicating Google Search Results
82 Converting Google results to RSS suitable for syndication or incorporation into
your own web site.

RSS is an XML-based syndication format used by web sites to provide
abstracts of their content for open-ended syndication. RSS-syndicated content
is incorporated into web sites, aggregated by news services, and consumed by
RSS news readers similar in form to the Usenet newsreaders of old.

This hack converts sets of Google search results to RSS format for syndica-
tion. The C# .NET source code and full instructions are available at http:/
www.razorsoft.net/weblog/stories/2002/04/13/google2rss.html.

Running the Hack

Google2RSS is a command-line utility. To run it, you’ll need to have a Win-
dows machine with the .NET Framework installed. If you want to compile it
from source yourself, you’ll need to have the .NET Framework SDK too. It
accepts a multitude of command-line switches, all of which are documented
on the Google2RSS site.

258 | Google Web API Applications

Searching Google Topics

Here’s a sample run of Google2RSS, a SafeSearch query Google API :

google2rss.exe -key "12BuCK13mYShOE/34KNOcK@ttH3DoOR" -query "Google API" -
safesearch true -filter true -title "Tracking the Google API" -link http://
www.example.com/API -description "Tracking the Google API Mentions in
Google" -webMaster info@example.com -outfile “"googleapi.rss”
This will produce an RSS document fit for consumption by any number of
RSS tools, applications, and services. Drop it into your web server’s docu-
ment directory and announce its whereabouts so that others may use it.
Incorporate it into your own web page using any number of tools.

Searching Google Topics
A hack that runs a query against some of the available Google APl specialty
topics.

Google doesn’t talk about it much, but it does make specialty web searches
available. And I'm not just talking about searches limited to a certain
domain. I'm talking about searches that are devoted to a particular topic.
The Google API makes four of these searches available: The U.S. Govern-
ment, Linux, BSD, and Macintosh.

In this hack, we’ll look at a program that takes a query from a form and pro-
vides a count of that query in each specialty topic, as well as a count of
results for each topic. This program runs via a form.

Why Topic Search?

Why would you want to topic search? Because Google currently indexes
over 3 billion pages. If you try to do more than very specific searches you
might find yourself with far too many results. If you narrow your search
down by topic, you can get good results without having to exactly zero in on
your search.

You can also use it to do some decidedly unscientific research. Which topic
contains more iterations of the phrase “open source”? Which contains the
most pages from .edu (educational) domains? Which topic, Macintosh or
FreeBSD, has more on user interfaces? Which topic holds the most for
Monty Python fans?

The Code

#1/usr/local/bin/perl

gootopic.cgi

Queries across Google Topics (and All of Google), returning
number of results and top result for each topic.

gootopic.cgi is called as a CGI with form input

Google Web API Applications | 259

- Searching Google Topics

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

Google Topics

my %topics = (
' => 'All of Google',
unclesam => 'U.S. Government',

linux => 'Linux',
mac => 'Macintosh’,
bsd => 'FreeBSD'

);
use strict;

use SOAP::Lite;
use CCGI qw/:standard *table/;

Display the query form
print
header(),
start_html("GooTopic"),
h1("GooTopic"),
start_form(-method=>'GET'),
‘Query: ', textfield(-name=>'query'), ' ',
submit(-name=>'submit', -value=>'Search'),
end_form(), p();

my $google_search = SOAP::Lite->service("file:$google wdsl");

Perform the queries, one for each topic area
if (param(‘query')) {
print
start_table({-cellpadding=>'10"', -border=>'1"}),
Tr([th({-align=>'left'}, ['Topic', 'Count', 'Top Result'])]);

foreach my $topic (keys %topics) {

my $results = $google search ->
doGoogleSearch(
$google key, param('query'), 0, 10, "false", $topic, "false",
"', "latin1", "latin1”

)i
my $result_count = $results->{'estimatedTotalResultsCount'};
my $top_result = 'no results’';
if ($result count) {

my $t = @{$results->{'resultElements'}}[0];
$top result =

260 | Google Web API Applications

Searching Google Topics

b($t->{title}||'no title') . bxr() .
a({href=>$t->{URL}}, $t->{URL}) . br() .
i($t->{snippet}|| 'no snippet’);

}

Output

print Tr([td([
$topics{$topic},
$result_count,
$top_result

)}

1

}

print
end_table(),
}

print end_html();

Running the Hack

The form code is built into the hack, so just call the hack with the URL of
the CGI script. For example, if I was running the program on researchbuzz.
com and it was called gootopics.pl, my URL might look like http:/www.
researchbuzz.com/cgi-bin/gootopic.cgi.

Provide a query and the script will search for your query in each special
topic area, providing you with an overall (“All of Google”) count, topic area
count, and the top result for each. Figure 6-21 shows a sample run for "user
interface" with Macintosh coming out on top.

Search Ideas

Trying to figure out how many pages each topic finds for particular top-level
domains (e.g., .com, .edu, .uk) is rather interesting. You can query for inurl:
xx site:xx, where xx is the top-level domain you’re interested in. For exam-
ple, inurl:va site:va searches for any of the Vatican’s pages in the various
topics; there aren’t any. inurl:mil site:mil finds an overwhelming number
of results in the U.S. Government special topic—no surprise there.

If you are in the mood for a party game, try to find the weirdest possible
searches that appear in all the special topics. “Papa Smurf” is as good a
query as any other. In fact, at this writing, that search has more results in the
U.S. Government specialty search than in the others.

Google Web API Applications | 261

T Finding the Largest Page

http:/fwww.uie.com/
All of 2420000 .. Feature Article. Understanding Users through Brand
Google Research: An Interview with Mitch

MecCasland User Interface Engineering's Christine
Perfetti recently sat down ...

port-amiga: Re: TeX user interface(?)

http://mail-index.netbsd.org/port-amiga/1996/05/03/

0001 html

FreeBSD 4100 Sulyec: Re: TeX' user Muﬁ) To: Jose
s350.engr.ccny.cuny.edw>

me Joern Ciau.m <joern(@TechFak Uni-

Bielefeld. DE> List: port ..

MMMIWGIHM(HIGIHG)
ac/HI(

M

Macintosh 10500 «w« NEW: Aqua Human Interface Guidelines. This
document describes how to design

your application for the Mac OS X user interface,
lnown as Aqua. ...

T @ internetzone S . : P

Figure 6-21. Google API topic search for “user interface”

Finding the Largest Page
We all know about Feeling Lucky with Google. But how about Feeling Large?

1484

Google sorts your search result by PageRank. Certainly makes sense. Some-
times, however, you may have a substantially different focus in mind and
want things ordered in some other manner. Recency is one that comes to
mind. Size is another.

In the same manner as Google’s “I’m Feeling Lucky” button redirects you to
the search result with the highest PageRank, this hack sends you directly to
the largest (in Kilobytes).

262 | Google Web API Applications

Finding the Largest Page

This hack works rather nicely in combination with repeti-

tion [Hack #7].

The Code

#1/usr/local/bin/perl

goolarge.cgi

A take-off on "I'm feeling lucky", redirects the browser to the largest
(size in K) document found in the first n results. n is set by number
of loops x 10 results per.

goolarge.cgi is called as a CGI with form input

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

Number of times to loop, retrieving 10 results at a time
my $loops = 10;

use strict;

use SOAP::Lite;
use CGI qw/:standard/;

Display the query form
unless (param('query')) {
print

header(),
start_html("Goolarge"),
h1("GoolLarge"),
start_form(-method=>"'GET"),
"Query: ', textfield(-name=>'query'),
' ',
submit(-name=>"submit’, -value=>"I'm Feeling Large"),
end_form(), p();

}

Run the query

else {
my $google_search = SOAP::Lite->service("file:$google wdsl");
my($largest_size, $largest_url);

for (my $offset = 0; $offset <= $loops*10; $offset += 10) {

Google Web APl Applications | 263

Finding the Largest Page

my $results = $google search ->
doGoogleSearch(
$google_key, param('query'), $offset,
10, "false", "", "false", "", "latinm1", "latin1"

)s
@{$results->{'resultElements'}} or print p('No results'), last;

Keep track of the largest size and its associated URL
foreach (@{$results->{'resultElements'}}) {
substr($_->{cachedSize}, 0, -1) > $largest_size and
($largest_size, $largest url) =
(substr($_->{cachedSize}, 0, -1), $_->{URL});
}
}

Redirect the browser to the largest result
print redirect $largest_url;

}

Running the Hack

Call up the CGI script in your web browser. Enter a query and click the “I'm
Feeling Large” button. You'll be transported directly to the largest page
matching your query—within the first specified number of results, that is.

Usage Examples

Perhaps you're looking for bibliographic information for a famous person.
You might find that a regular Google search doesn’t net you with any
more than a mention on a plethora of content-light web pages. Running
the same query through this hack sometimes turns up pages with exten-
sive bibliographies.

Maybe you're looking for information about a state. Try queries for the state
name along with related information like motto, capitol, or state bird.

Hacking the Hack

This hack isn’t so much hacked as tweaked. By changing the value assigned
to the $loops variable in my $loops = 10;, you can alter the number of
results the script checks before redirecting you to what it’s found to be the
largest. Remember, the maximum number of results is the number of loops
multiplied by 10 results per loop. The default of 10 considers the top 100
results. A $loops value of 5 would consider only the top 50; 20, the top 200;
and so forth.

264 | Google Web APl Applications

)

Instant Messaging Google

- Instant Messaging Google
85 Accessing Google with AOL Instant Messenger.

If we’re going to step out beyond the Google interface, why even bother to
use the Web at all? The Google API makes it possible to access Google’s
information in many different ways. Googlematic makes it possible to query
Google from the comfort of AOL Instant Messenger.

Here’s how it works: send a message (a Google query) to the instant messen-
ger buddy, “googlematic.” Googlematic will message you back with the top
result for your query. Reply with “More” and you’ll get more results format-
ted as a numbered list. Figure 6-22 illustrates this.

- googlemahic - Instant Message

Googlebook: perl
googlematic: Searched for "perl” and found Peri.com: The
Source for Perl —- perl development, peri ... : The official Peri
| some page, run by O'Reilly. Contains documentation, news,
M and kinks to a variety...
Googlebook: more
googlematic: Top sites: ;
W 1 - Perl.com: The Source for Perl -- peri development, peri ...
N 2 - http Shwvew perl.combperl
Wl 3 - Perl Mongers
4-CPAN
5 - use Perl: All the Peri that's Practical to Extract and

Figure 6-22. Query to googlematic through AOL Instant Messenger
Message with the number associated with a particular result for further
details, as shown in Figure 6-23.

The Googlematic script, further instructions, and links to required modules
may be found at http://interconnected.org/googlematic/.

Google Web APl Applications | 265

Instant Messaging Google

> googlematic - Instant Message

W Peri home page, run by OReilly. Contains documentation,
news, and links to a variety...

Googlebook: more

googlematic: 7op sites:

W1 - Perl.com: The Source for Perl -- perl development, peri |

M 2 - http Srwww.perl.com/peri/

M 3 - Peri Mongers

M4-CcraN

8l 5 - use Perl: All the Perl that's Practical to Extract and
Report

Googlebook: 3

googlematic: Searched for "perl" and found Perl Mongers:
Non-praofit organization dedicated to malking the incredibly
useful Perl language even more useful for...

Googlebook:

Figure 6-23

The Code

. Requesting further detail for a googlematic result

#!/usr/bin/perl -w
googlematic.pl

4

H O H HE O H TR

Provides an AIM interface to Google, using the Google SOAP API
and POE to manage all the activity.

Usage
./googlematic.pl &

Requirements
- Googlematic::IM, Googlematic::Responder, Googlematic::Search,
which are all distributed with this script

- HTML::Entities
- Net::AOLIM

266 |

Google Web API Applications

- POE

- SOAP::lite

- XML::Parser

b3

Essential configuration (below)

- AIM username and password (used in Googlematic::IM)

- Google API Developer Key (used in Googlematic::Search)

*

Optional configuration (below)

- Search request throttling (used in Googlematic::Search)

- Limit of number of user sessions open (used in Googlematic::IM)
- Time limit on a user session (used in Googlematic::Responder)

H HE OE R B B BB

(c) 2002 Matt Webb <matt@interconnected.org> All rights reserved

use strict;
use POE;

$| = 1;

use Googlematic::IM;
use Googlematic::Search;

Configuration variables
$Googlematic::CONFIG = {
aim_username => "xxxxxxx",
aim_password => "xo0xxxx",
google _key => "your key goes here",
searches_per_hour => "35", # the Google limit is 1000/day
max_user_sessions => "5",
user_session_timeout => "120" # in seconds

};

There are two POE sessions:
1 - Googlematic::IM, known as 'im', takes care of the Instant Messager
connection and looks after user sessions (which are created as new
POE sessions, and known as Responders).
POE: :Session->create(
package_states => [
Googlematic::IM => [
'_start', 'login_aim', 'loop', 'spawner’,
‘handler_aim’, 'send', '_child', '_stop’, 'proxy’
]
]
);

2 - Googlematic::Search, known as 'google’, takes care the SOAP::lLite
object making the searches on Google. Requests to it are sent from the
individual Responders.

Google Web API Applications | 267

Instant Messaging Google

POE: :Session->create(
package_states => [
Googlematic::Search => [
'_start', 'loop', 'search', 'reset’
]
]
)

Run the POE machine.
$poe_kernel->run();

exit;

—Tara Calishain and Matt Webb

268 | Google Web API Applications

CHAPTER SEVEN

Google Pranks and Games
Hacks #86—-92

The culture of the Internet has its own sense of humor—a Monty Python,
Tom Lehrer, Terry Pratchett—esque sense of humor. It should come as no
surprise, therefore, that Google and the Google API have been used for a
variety of silly, weird, and just plain strange search applications.

Having fun with search engines isn’t a new thing. See http://www.cse.unsw.
edu.au/~andrewm/misc/segames/ for a whole page of search engine games—
including a search engine drinking game, believe it or not. Search engine users
have also discovered that searching for certain phrases in Google can lead to
interesting results. And earlier this year, the idea of “Google bombing”—
groups linking to sites using pre-agreed upon descriptions to boost that site in
Google’s search results—became so prevalent that rumor has it that Google
took steps to prevent the practice affecting the listings in its index.

If you’ve got a sense of humor but no sense of programming, don’t worry;
you can pull some decent pranks and have a little fun without writing a line
of code. Of course, if you’re using the Google API, you’ve the programming
power to add punch and complexity to your pranks and pratfalls.

Let’s have a little fun!

The No-Result Search (Prank)

L #86 Want to prank your friends using Google? These techniques that will make
sure your search has no results.

Ah, pranking with a search engine. Nothing quite so much fun as befud-
dling your friends with some utterly weird search results. One fun and easy
thing to do is make a search result that one would think is wildly popular
and set it up so it has no results.

The No-Result Search (Prank)

There are a couple ways you can set up the prank. The first way is to hack
the URL. The second is to create a search that will never have a result.

Hacking the URL

To hack a URL so a query has no results, just add the following code to the
end of a URL:

&num=-1

Even if a num modifer already exists in the URL, adding another to the end
overrides the first value. The &num=-1 switch informs Google that you want —1
results. Because it’s not possible to return —1 results, Google will provide the
next best thing: none.

Hacking the Search

Maybe you won’t have a chance to hack the URL, and you’ll need to hack
the search instead. You can do that by creating a search with the special
search codes that can’t have any results.

One easy way to create a no-result query is to add any two site: syntaxes to
it:

site:org site:com
Google operates with a default AND; a single page in Google’s index can’t be
simultaneously found from both the .org and .com domains.

Or you can search for a site you know doesn’t exist:
site:microsoft

While site:microsoft.com is a valid search for the site syntax, microsoft by
itself (without the .com suffix) isn’t. So a query like windows site:microsoft
would get you zero results.

You can also fool Google by specifying that something must be included and
not included at the sime time. This works best with really long queries so
that the query visible from the query box looks normal. Try this one:

microsoft windows programming developer source -windows

The only problem is that Google echoes the search terms on its result pages,
so if someone’s paying attention, none of these tricks will work. A word to
the wise: try only on your less observant friends.

Finally, if the person you’re pranking doesn’t know much about the Google
date-range search syntax, you can also fake a search with a bogus date
range. Use a five-digit number for the code so it looks semi-authentic, but it
still won'’t give you any search results.

microsoft daterange:99991-99992

270 | Google Pranks and Games

Delivering the Prank

There are three ways to deliver the prank to the prankee. The first way is in
person. If you’re working on a computer with them, slip in a couple of these
searches, and then point confused to the Google search page that shows no
results for Perl.

The second way is to send a search query to the prankee. The best way to do
this is to use a special syntax that doesn’t really work, like site:microsoft.

And the third way is to send an URL to the prankee. Google search URLs tend
to be long, so you might want to use one of the URL-shortening services [Hack
#38] before you send the URL to your prankee. And if you do shorten the URL,
use the opportunity to put a couple of the more elaborate special syntax hacks
in it, like site:com site:org, or a fake date-range search.

Google Whacking

With over 2 billion pages in its index, is it possible to get only one result for a
search?

With an index of over 2 billion pages, Google attracts lots of interest from
searchers. New methods of searching are tested, new ways of classifying
information are explored, new games are invented.

New games are invented? Well, yes, actually. This is the Internet, after all.

The term “Google whacking” was coined by Gary Stock. The idea is to find
a two-word query that has only one result. The two words may not be
enclosed in quotes (that’s too easy), and the words must be found in Goo-
gle’s own dictionary (no proper names, made-up words, etc). If the one
result comes from a word list, such as a glossary or dictionary, the whack is
disqualified.

If you manage a Google whack—and its harder than it sounds—be sure to
list your find on the official Whack Stack (http://www.googlewhack.com/).
Perusing the most recent 2,000 whacks is highly recommended if your brain
is stuck and you need a little inspiration in your research. Examples include
“endoscopy cudgels,” “nebbish orthodontia,” and “peccable oink.”

Are you stuck for a Google whack query? This hack should help. It takes a
random word from each of two “word of the day” sites and queries Google
in hopes of a Google whack (or as experienced players would say, “To see if
they make a whack”).

#!/usr/local/bin/perl

google_whack.pl

An automated Google whacker.

Usage: perl google_whack.pl

Google Pranks and Games | 271

-. Google Whacking

Your Google API developer's key
my $google key="insert key here';

Location of the GoogleSearch WSDL file
my $google_wdsl = "./CoogleSearch.wsdl";

use strict;

Use the SOAP::Lite and LWP::Simple Perl modules
use SOAP::lite;
use LWP::Simple;

Generate some random numbers to be used as dates for choosing
random word one.

srand();

my $year int(rand(2)) + 2000;

my $month = int(rand(12)) + 1;

$month < 10 and $month = "0%$month";

my $day = int(rand(28)) +1;

$day < 10 and $day = "0$day";

Pulling our first random word from Dictionary.com
my $whackone =
get("http://www.dictionary.com/wordoftheday/archive/$year/$month/$day.
html")
or die "Couldn't get whack word 1: $!";
($whackone) =
($whackone =~ /<TITLE>Dictionary.com\/Word of the Day: (.*)<\/TITLE>/i);

Generate a new year between 1997 and 2000 for choosing
random word two

srand();

$year = int(rand(5)) + 1997;

Pulling our second random word from th now defunct Maven's

Word of the Day (thank goodness for archives)

my $whacktwo =
get("http://www.randomhouse.com/wotd/index.pperl?date=$year$month$day")
or die "Couldn't get whack word 2:: $!";

($whacktwo) = ($whacktwo =~ Im<h2>(.*)</h2>11);

Build our query out of the two random words
my $query = "$whackone $whacktwo";

Create a new SOAP::Lite instance, feeding it GoogleSearch.wsdl
my $google search = SOAP::Lite->service("file:$google wdsl");

Query Google
my $results = $google search ->
doGoogleSearch(
$google key, $query, 0, 10, "false", "", "false",
"", "latin1", "latinm1”

)5

272

| Google Pranks and Games

A single result means a possible Google whack
if ($results->{'estimatedTotalResultsCount'} == 1) {
my $result = $results->{'resultElements'}->[0];
print
join "\n",
"Probable Google whack for $query”,
"Title: " . $result->{title}||'no title',
"URL: $result->{URL}",

"Snippet: " . $result->{snippet}||'no title’,
"\n";

}

Anything else is Google jack

else {

print "Google jack for $query, with " .
$results->{ estimatedTotalResultsCount'} . " results\n”;

Running the Hack

Simply call the script on the command line with no arguments at all.

The Results

Here’s a sample Google whack session. Told you it was hard!

% perl google_whack.pl Google jack for wan palooka, with 48 results
% perl google_whack.pl Google jack for hebetude Maisie, with 0 results
% perl google whack.pl Google jack for lexicography doldrums,
with 90 results
% perl google_whack.pl Google jack for foundling hokey,
with 12 results
% perl google whack.pl Google jack for cataract pettifogger,
with 6 results

l ; GooPoetry

#88 Google's got the soul of a poet, or at least knows how to toss a good word
salad.

Perhaps you didn’t realize it, but with a little help from a hack, Google can
churn out poetry that will bring a tear to your eye. Okay, perhaps not. But
Google sure can mix a mean word salad.

This hack takes a query and uses random words from the titles returned by
the query to spit out a poem of random length. The user can specify a poetry
“flavor,” adding words to the array to be used. The flavors in this version of
the hack include: hippie, beatnik, and Swedish Chef. Here’s a paean to the
O’Reilly Camel Book, flavored by Shakespeare:

Google Pranks and Games | 273

| GooPoetry

-- 3rd alas! to the

0'Reilly thee |

2nd Camel Book

Catalog: | hither Book Welcome oreilly.com Edition --

2000 Programming The

-- Dictionary] Book sirrah alas!

-- Perl 2000 2nd

2000 node: Camel Dictionary] Better node: Jargon oreilly.com
thee thee -- oreilly.com Programming 2nd oreilly.com

The Code

#!/usr/local/bin/perl

goopoetry.cgi

Generates a mean word salad.

goopoetry.cgi is called as a CGI with form input

Your Google API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

Number of lines per poem
my $numlines = 10;

Number of words per line
my $numwords = 6;

use strict;

use SOAP::Lite;
use CGI gw/:standard/;

my $flavors = {
'Hippie' => [
"funky',
‘munchies’],
'Beatnik' => ['daddy-o', 'long gone', ‘hepcat', 'jazzy',
‘cool’, 'hip','cool’,'jazzman','zoot'],
'Shakespeare' => ['thee', 'hark!', 'forsooth,', 'alas!', 'sirrah',
‘hither', 'hence'],
'Swedish Chef' => ['bork bork bork!', 'hmdordeborkbork', 'BORK!',
'hrm de hr', 'bork?', 'hur chikee chikee'],
‘Default',=> ['...", "I, "(2)', "---"]
IH

‘wow', 'groovy man!', 'far out!', 'Right onl!',

‘outta sight', 'Like,','peace out!’',
']

print
header(),
start_html("GooPoetry"),
h1("GooPoetry"),
start _form(-method=>'GET'),

274 | Google Pranks and Games

"Query: ', textfield(-name=>'query'),
br(),
‘Flavor: ', popup_menu(
-name=>"flavor', -values=>[keys %¥$flavors], -default=>'Default’
)s
br(),
submit(-name=>"'submit’, -value=>'Toss that Word Salad'),
end form(), p();

if (param('flavor')) {
my $google_search = SOAP::Lite->service("file:$google wdsl");

Create an array for the random words

my @words;

Mix in the flavored words

push @words, @{$flavors->{param('flavor')}};

Query Google
my $results = $google_search ->
doGoogleSearch(
$google_key, param('query'), 0, 10, "false", "", "false",
", "latin1", "latin1"

5

Glean and clean title words from results

foreach my $result (@{$results->{'resultElements’'}}) {
$result->{title} =~ s!\n!lg; # drop spurious newlines
$result->{title} =~ slllg; # drop all HTML tags
push @words, split /\s+/, $result->{title};

}

for (my $1 = 0; $1 <= $numlines; $1++) {
Randomly decide the number of words in this sentence
for (my $w = 0; $w <= int(rand($numwords))+3; $w++) {

print lc $words[rand(scalar @words)] . ' ';

}
print "";

}

}

Running the Hack

Point your browser at the CGI script, fill out the form, and click the “Toss
that Word Salad” button. Figure 7-1 shows an example.

Hacking the Hack

You may have noticed that this code does not have an error message, if the
query submitted does not get any results. That’s on purpose; because there
is always a “flavor” array pushed into the “words” array, even a query that
gets no results will create a poem. For example, if you searched for an query

Google Pranks and Games | 275

GooPoetry

: |coffee tea milk |
Flavor: (Hipple

€ Tosstharwordsalad

event menu tea hotel j tea
brail mik faco conties Sight. ©
flying outta sight like, for munchies
drinks drinks coffee, peace out! treats
attendant coffee, waltman: ﬂymg inter-continental
waltman: debra & wow &
& eat coffee, service, rio, right on!
tea inter-continental services coffee, t0
seminary coffee/tea/milo/milk seminary event outta sight
wow right on! or ... rio,
event sodas fruit milk, milk milk

Figure 7-1. Google-generated poetry

that got no results, and were using the “beatnik” flavor, you’d get a poem
with lines like this:

cool jazzy
long gone jazzman long gone hepcat zoot
cool zoot zoot jazzman hepcat jazzman zoot long gone

As you can see, it’s just words from the beatnik flavor repeated over and
over, as there’s nothing else in the @words array.

You can add flavors to your heart’s content. Simply add another entry in the
$flavors data structure. Say, for instance, you wanted to add a “Confused”
flavor; you'd add the following bolded line just after the opening my
$flavors = {:

my $flavors = {

‘Confused’' => ['huh?', 'duh’', 'what?', 'say again?',
'do what now?', 'wubba?'],

'Hippie' => ['wow', 'groovy man!', 'far out!', 'Right on!’,
'funky', 'outta sight', 'Like,','peace out!',
‘munchies’],

'Beatnik' => ['daddy-o', 'long gone', ‘'hepcat', 'jazzy',
‘cool’, 'hip','cool’,'jazzman’,'zoot'],

276 | Google Pranks and Games

Creating Google Art

'Shakespeare' =»> ['thee', 'hark!', 'forsooth,', 'alas!', 'sirrah’,
'hither', 'hence'],

'Swedish Chef' =»> ['bork bork bork!', 'hmdordeborkbork', "BORK!',
'hrm de hr', 'bork?", 'hur chikee chikee’],

‘Default’ => ['...", "', "(2)", "---"]

b

That’s all there is to it. You’ve successfully added a new flavor to the hack.

You can also change the number of lines and maximum words per line of

the generated poem by changing the values of $numlines and $numwords,

respectively. I did find, however, that the defaults are pretty optimal for cre-

ating interesting “poetry”; less than 10 lines and there wasn’t much flavor,
more than 10 and it repeated itself far too often.

Creating Google Art

Save a Usenet news post for later searching and viewing as a work of art.

Google’s a poet, a chef, an oracle, not to mention a great artist. Who knew?
With a little help from you, Google can be the next Picasso.

Okay, Whistler.

Okay, Billy from Mrs. Miller’s third grade class.

When you search for something on Google Groups, the words for which you
searched are highlighted in glorious primary colors within any posts you
peruse. The main Google web search does this as well but only on the
cached version of a web page. Some people far more artistically inclined with
far more time on their hands than [ran with this idea, manipulating the
highlights to create works of art. For example, there’s a portrait of Lincoln at
http://groups.google.com/groups’q=aa+ae+ao+ea+ee+eo+oa+oetselm=3e0d404c.
0207241043.539ae9f7%40posting.google.com and Bart Simpson at
http://groups.google.com/groups?q=aa+ae+ao+ea+ee+eotrselm=3e0d404c.
0207261202.a0246c1%40posting.google.com.

But it’s not simply a matter of pushing a picture into Google Groups.
What'’s involved is creating a text-based image on a grid, populating each
square with a two-letter code signifying a color from the Google syntax high-
lighting palette. You need to post that “image” to a Usenet newsgroup, wait
until it shows up in Google Groups, and then search for it using some fancy
URL footwork.

At least that’s how it was done...

Google Pranks and Games | 277

~ #89 Creating Google Art

Making Your Own Art

Creating your own Google Groups art is as simple as drawing a picture,
thanks to the Google Art Creator (http://www.kryogenix.org/code/browser/
aqgoogle/).

If you've ever used even the most primitive of computer drawing applica-
tions (e.g., MacPaint on Macintosh or Paint on Windows), you’ll find the
tool a snap. Click on the color you want to use, then click on the square you
want to paint. Use white to erase any errors you make. My masterpiece is
shown in Figure 7-2.

1 _ "@I @ g QMp:I,‘M;k e .. _efr.."qqm'w = : B !
Back Forward Reload Stop Location Sidebar i

The Google Art creator

This app helps you create Google Axt, like these great examples. (drawn by the talented

Tunﬁﬂ‘ty.n&wbym).Shnplym?me‘mhmbGoo?h',my

mﬂﬁmm'r l;h:mmwlﬂn) g post into a post to Usenet. Then go searching for it on Google Groups
, when it's g

Please note that Google Groups Art is not welcome on alt.ascii-art, so please don't post it there. Try

using one of the test groups instead.

hockg =

Ol

Document: Done

Figure 7-2. Art made using Google Art Creator

Once you've put the finishing touches on your masterpiece, name it by put-
ting some keywords into the provided query box and click the “Make post
to Google” button. You're not actually posting anything, mind you; instead,
the tool will generate a post that you can copy and paste to Google, as
shown in Figure 7-3.

Posting is the one bit of the process you still have to do manually. Fire up
your favorite Usenet newsreader or make use of Google Groups’ posting
functionality. Whatever you do, don’t post to just any group; use one of the
test groups. There’s a huge hierarchy under alt.test to choose from.

Wait.

278 | Google Pranks and Games

BB "% 1@ hp /v keyogenix.ong code browser aagoogie] 5

Reload Stop Location Sidebar
r
~|

Search Google Groups for aa ae ai ac au ea ee e&i eo “"google hacks®

* s e ms se s e s% ss s ss ss se ss ss @B .0 tn 2e es 2= ws

s% ss s ma se ss ss as ss ss ss ss ss s s+ s+ BE L. 20 ce ae = ww
. @32 €32 83 .. €832 €32 €3 .. €2 €2 €2 .. €2 &3 83 .. &3 .. &A A &2
«+ 83 .. @A .. &34 .. &3 .. &a .. &3 .. &3 .. 83 .. 832 .. &3 .. 82
. @32 2832 &3 .. €3 &3 &2 .. €2 &2 ea .. &2 &3 &3 .. &3 .. &3 &A &3
s ss os BA .. 2. ce ss 2s ss ss ss ss ss - B8 BA e e
« 88 88 @A +: s+ =+ 2+ =+ . @32 €2 82 832 &2 &3
il e Ll ULl el
ss BB 4 ve o4 4 o8 o3 25 85 o8 04 s¢ oo BB ve we vv e =n

.. 832 ea ea .. ea ®a ea ea ea ea .. ea .. ea .. ea ea

.. .. ea .. ea .. ea @€a ea ea ea ..

. 8a .. ea .. o2 ea ea ea .. ea €2 ea .. ea .. ea .. ea ea

se ar 3w w3 mm ed =% 44 8 S8 &5 4% =2 we ew =r we ==

ie Sa,es 5% =5 == =e =e =s BE SR

Designed by agGoogle (http://www.kryogenix.org/code/browser/aggoogle/)

L
Figure 7-3. Art post generated by Google

Notice that the Google Art Creator not only provides the post itself, but also
what to search for in Google Groups. In my case, that’s aa ae ai ao au ea
ee ei eo "google hacks". If all goes to plan, with a little patience and persev-
erence, my artwork should be on show in Google Groups within a day or so.

1 Google Bounce

You can get random results from Google with a database of words and
random numbers. Why not try a Google Bounce?

The Google Bounce accepts a query word from the user and does a search. It
pulls a random title word from one of the search results and searches for
that word. It does this a random number of times. In the end, it’ll list the top
10 results for the final query. There’s a filter to try to make sure that com-
mon Google “stop words” (e.g., the, is, a) are removed from the query.

The Code

#!/usr/local/bin/perl

Version 1.3, 7/29/2002

googlebounce.cgi

Bounce around from a user-specified query to a random set
of results.

Google Pranks and Games | 279

Google Bounce

googlebounce.cgi is called as a CGI with form input
use vars qw/$google_key $google wsdl $max_bounces $current_bounce/;

Your Google API developer's key
$google_key="insert key here';

Location of the GoogleSearch WSDL file
$google_wdsl = "./GoogleSearch.wsdl";

use SOAP::Lite;

use LWP::Simple qw/get/;
use CGI qw/:standard/;

print
header(),
start_html("GoogleBounce"),
h1("GoogleBounce"),
start_form(-method=>'GET"),
'Query: ', textfield(-name=>'query'),
" ',
submit(-name=>"submit', -value=»'Search'),
end_form(), p();

print "\n"x4;

if (param('query')) {
$|++; # turn off buffering

print h3("Progress Report...");

Choose a random number of bounces
$max_bounces = int(rand(5))+2;

Set the counter to bounce number 1
$current_bounce = 1;
bounce(param('query'));

}

sub bounce {
my ($query) = @_;
my $new_query;

Filter query for stopwords
my $stopwords_regex = join '|', qw/the and -- - 1 www com of is a/;

#$query =~ s/$stopwords_regex//gi;

Choose a random number of results
my $max_results = int(rand(9))+2;

my $google_search = SOAP::Lite-»>service("file:$google wdsl");

280 | Google Pranks and Games

Google Bounce

my $results = $google_search ->
doGoogleSearch(
$google_key, $query, 0, $max_results,
"false", "", "false", "", "latin1", "latin1"

);

Progress Report
print
join br()."\n",
"<p>Bounce $current_bounce of $max_bounces”,
"Searching for:$query”,
"Asking for $max_results results”,
"Got " . scalar @{$results->{resultElements}} . " results</p>";

my $new_query;

for (my $ii = $#{$results->{resultElements}}; $ii »= 0; $ii--) {
$new_query = $results->{resultElements}->[$ii]->{title};
$new_query =~ sl<.+2>!lg; # drop all HTML tags
$new_query =~ /\w/ and last;

If there's a new query and we're not overbounced, bounce again
++$current_bounce <= $max_bounces and
$new_query =~ /\w/ and
$new_result = bounce($new_query) and
return $new_result;

Otherwise, print out the top 10 for the final query
print h3("Final Results...");

my $google_search = SOAP::Lite->service("file:$google wdsl");

my $results = $google_search ->
doGoogleSearch(
$google_key, $query, 0, 10,
"false", "", "false", "", "latin1", "latim1"

);
@{$results->{"resultElements'}} or print "None";

foreach (@{$results->{'resultElements'}}) {
print p(

b($_->{title}|| 'no title'), bx(),

a({href=>$_->{URL}}, $_->{URL}), br(),

i($_->{snippet}||'no snippet’)

)

}

print end_html();
exit;

Figure 7-4 shows the results.

Google Pranks and Games | 281

. Google Mirror

GoogleBounce

Query:pei |
Progress Report...

Bounce 1 of 6
Searching for perl
Asking for 6 results
Got 6 results

Bounce 2 of 6

Searching for perl.com: What's New in Perlland? [Jul 25, 1999]
Asking for 5 results

Got 5 results

Bounce 3 of 6

Searching for Search Results for Portable Home Bars
Asking for 4 results

Got 4 results

Bounce 4 of 6

Searching for Compare Products and Stores - Ratings and Prices for Luxury Home ...
Asking for 10 results

Got 10 results

Figure 7-4. Google Bounce results for perl

See Also
* Getting Random Results (On Purpose) [Hack #73)

E Google Mirror

If you want a different perspective on Google, check out the Google Mirror.

In the Internet sense, a “mirror” is a site that copies the content of another
site. But there’s a Google mirror that is a mirror in the traditional sense; it is
the image of Google, backward.

Antoni Chan’s Google Mirror (http://www.alltooflat.com/geeky/elgoog/),
shown in Figure 7-5, copies Google’s main page with everything mirror-
imaged, including the graphic. It’s a working search engine, too—you’ll need
to enter your search backward too ;-). If you want to find “fred,” for example,
you need to search for derf. Search results are mirrored as well, naturally.

In fact, just about every page you can visit on the regular Google site is mir-
rored here. You can read mirrored copies of Google’s press releases, jobs
available (Figure 7-6), even backward copies of the official logos.

282 | Google Pranks and Games

Google Mirror

spiT heraeS smTﬁﬁ ﬁcnareferp hcraeS decnavdA ' :

nottub hcraes eht no gnikcile fo daetsni yek nruter eht tih tsuj nac uoy sresworb tsom nl pi

slenaP dna spirtS cimoC < scimoC < sitA yrogetaC

yticfreD

srotinom 006x008 rof edaM freD ot sirVy 0002 © yiiCfreD
freD B noitpircseD

C = slenaP dna spintS cimoC < scimoC < strA yrogetaC
segap rahmiS - dehcaC - k2 - \moc ylicfrad www

.ssa sih pu thgi b taht evohs nac eH
segap ralimiS - dehcaC - 2002 41 voN - k1 - Imth nootwen\n\moc yticfred www
[moc yicfred www morf stiuser eroiM |

* straP scinortcelE *

Ivlisae siht deen uoy trap cinortcele yna dniF CB A

..hcraes trap drac enil enilnQ stnenopmoc lacinahcemortcele dna evissap evitca fo rotubirtsid gnikcotS
‘noitpircseD

stnenopmoC < __ < lacincelE dna scinortcelE < ssenisuB 'yrogetaC

seqap ralimiS - dehcaC - k31 - \moc Ini-fred www

Imth.0398\F REDWIL SMI\stnenopmoc-eludom-tsil smaginib-igcwog tsin.smag
segap ralimiS

Figure 7-5. Antoni Chan’s Google Mirror

elgooG ta sboJ looC g

1gniriH er'eW emoH

elgooG tuobA A

tnemnorivne krow euginu a dna stcejorp igniriH erew

gmigneliahc yone luoy yiiad elpoep fo snoilim oM daeR

R— yb desu eb ot secivres gnipoleved elihW | sgninepO «
ot ekil s'ti tahw fo weiv ‘ecalptekram evititepmoc a ni ytilibatiforp niatta
dnahtsrif a teG | ot su gnilbane gnisitrevda dna secivres hcraes |
el ta reenigne na eb E ni smaerts eunever gnorts owt depoleved evah |

&w 05 gniod nl_ecivres hcraes tseb s'dirow i
eht gnitaerc ‘laog nommoc a fo tusrup ehtni |
noitarepooc dna wtivitaerc retsof ot si hcaorppa

s'elgooG !
Yygolonhcet % noitpircsed boj ni deton esiwrehto sselnu aerA
setammaetygrene hgih fuf yaB ocsicnarf naS eht ni desab snoitisoP
Mogitotri 2 gnireenignE '
tae nac uoy skcans eht lla dna |
[myg moor emag yekcoh smetsyS laicnaniF fo rotceriD+ | -Noitces ofnl
relior ypareht egasasr.Lamm - {iilauQ erawtfoS) reganaM gnireenignE » | taroproC ruo
skrep gnizama dna erutive chas 3 UC| (ecnaraelc viiuces TeenignE tne gD+ | M e"!ﬁ";;g::
) gpisir gl reenignE memyolpeD - | Yrotsin,
SCV reimerp owt eht yb feonignE TopDUS IcudorP * 5'8lgooG
i dekcaB 4 urnuG lenreKouniL + | tuoba erom
yliad devres sehcnul M'_ Iz STeenionE oranlfos + nrael

Figure 7-6. Google’s job page viewed through Google Mirror

Google Pranks and Games | 283

" Finding Recipes

The only thing I couldn’t do with the Google Mirror site was set the lan-
guage options to something besides English. It looks as if the Google Mirror
interface can’t accept the cookies Google requires to set language prefer-
ences. I figured that if reading English backwards was fun, reading “Bork
Bork Bork!” (the Swedish Chef interface) would have been a howl!

E Finding Recipes
Let the Google API transform those random ingredients in your fridge into a

wonderful dinner.

Google can help you find news, catalogs, discussions, web pages, and so
much more—and it can also help you figure out what to have for dinner
tonight!

This hack uses the Google API to help you transform those random ingredi-
ents in your fridge into a wonderful dinner. Well, you do have to do some of
the work. But it all starts with this hack.

Using the Hack

This hack comes with a built-in form that calls the query and the recipe
type, so there’s no need to set up a separate form.

#!/usr/local/bin/perl

goocook.cgi

Finding recipes with google

goocook.cgi is called as a CGI with form input

Your Coogle API developer's key
my $google_key="insert key here';

Location of the GoogleSearch WSDL file
my $google wdsl = "./GoogleSearch.wsdl";

use SOAP::Lite;
use CGI qw/:standard/;

my %recipe_types = (

"General” => "site:allrecipes.com | site:cooking.com | site:
epicurious.com | site:recipesource.com”,

"Vegetarian/Vegan" => "site:fatfree.com | inurl:veganmania | inurl:
vegetarianrecipe | inurl:veggiefiles",

"Wordwide Cuisine" => "site:Britannia.org | inurl:thegutsygourmet |
inurl:simpleinternet | inurl:soupsong”

)

print
header(),

284 | Google Pranks and Games

Finding Recipes

start_html("GooCook"),

h1("GooCook"),

start_form(-method=>'CGET'),

'Ingredients: ', textfield(-name=>'ingredients'),

br(),

"Recipe Type: ', popup_menu(-name=>"recipe_type’,
-values=>[keys %recipe_types], -default=>'General'),

bI()l

submit(-name=>"submit', -value=>"Get Cookin'!"),

submit(-name=>'reset’, -value=>"Start Over"),

end_form(), p();

if (param('ingredients')) {
my $google search = SOAP::lite->service("file:$google wdsl");
my $results = $google_search ->
doGoogleSearch(
$google_key,
param('ingredients') . " " . $recipe_types{param('recipe_type')},
o, 10, "false", "", "“false", "", "latin1", "latinm1"

)

@{$results->{'resultElements'}} or print "None";

foreach (@{$results->{"'resultElements'}}) {
print p(

b($_->{title}||'no title'), bx(),

a({href=>$_->{URL}}, $ ->{URL}), br(),

i($_->{snippet}||'no snippet')

)
}

}

print end_html();

Hacking the Hack

Of course the most obvious way to hack this hack is to add new recipe
options to it. That involves first finding new recipe sites, and then adding
them to the hack.

Finding New Recipe Domains

Adding new recipe sites entails finding the domains you want to search. Use
the cooking section of Google’s Directory to find recipes; start with recipe col-
lections at http://directory.google.com/Top/Home/Cooking/Recipe_Collections/.

From here, find what you want and build it into a query supplement like the
one in the form, surrounded by parens with each item separated by a |.
Remember, using the site: syntax means you’ll be searching for an entire
domain. So if you find a great recipe site at http://www.geocities.com/
reallygreat/food/recipes/, don’t use the site: syntax to search it, use the

Google Pranks and Games | 285

Finding Recipes

inurl: search instead (inurl:geocities.com/reallygreat/food/recipes). Just
remember that an addition like this counts heavily against your ten-word
query limit.

Let’s take an example. The Cookbook section of the Google directory has a
Seafood section with several sites. Let’s pull five examples out of that and
make it a query supplement. Here’s what one could look like:

(site:simplyseafood.com | site:baycooking.com | site:coastangler.com | site:
welovefish.com | site:sea-ex.com)

Next, test the query supplement in Google by adding a query term to it and
running it as a search, for example:
salmon (site:simplyseafood.com | site:baycooking.com | site:coastangler.com
| site:welovefish.com | site:sea-ex.com)
Run a few different queries with a few different query words (salmon,
scallops, whatever) and make sure that you're getting a decent number of
results. Once you're confident that you’re getting a good selection of reci-
pes, you'll need to add this new option to the hack. You'll need to add it to
this part of the code:
my %recipe_types = (
"General"” => "site:allrecipes.com | site:cooking.com | site:
epicurious.com | site:recipesource.com”,
"Vegetarian/Vegan" => "site:fatfree.com | inurl:veganmania | inurl:
vegetarianrecipe | inurl:veggiefiles",
"Wordwide Cuisine" => "site:Britannia.org | inurl:thegutsygourmet |
inurl:simpleinternet | inurl:soupsong"
);
Simply add the name you want to call the option, =>, and the search string.
Make sure you add it before closed parantheses and the semicolon.
my %recipe types = (
"General" => "site:allrecipes.com | site:cooking.com | site:
epicurious.com | site:recipesource.com”,
“"Vegetarian/Vegan" => "site:fatfree.com | inurl:veganmania | inurl:
vegetarianrecipe | inurl:veggiefiles”,
"Wordwide Cuisine" => "site:Britannia.org | inurl:thegutsygourmet |
inurl:simpleinternet | inurl:soupsong”

"Seafood" => “site:simplyseafood.com | site:baycooking.com | site:
coastangler.com | site:welovefish.com | site:sea-ex.com"

)
You can add as many search sets as you want to the hack. You may want to
add Chinese Cooking, Desserts, Soups, Salads, or any number of other
options.

—Tara Calishain and Judy Hourihan

286 | Google Pranks and Games

CHAPTER EIGHT

The Webmaster Side
of Google

Hacks #93-100

You might be wondering why there’s a Google for webmasters section in
this book. After all, you're learning how to make the most out of Google,
not how to be a webmaster, right?

Even if you’re not the owner of a commercial web site, and even if you're
not looking for as much search engine traffic as possible, it’s critical that you
understand how Google treats search engines, if you want to get any Google
traffic at all.

Google’s Preeminence

When the Web was younger, the search engine field was all but wide open.
There were lots of major search engines, including: AltaVista, Excite, Hot-
Bot, and Webcrawler. This proliferation of search engines had both its
advantages and disadvantages. One disadvantage was that you had to make
sure you had submitted to several different places. One advantage was that
you had several inflows of search engine spawned trafffic.

As the number of search engines dwindle, Google’s index (and influence) is
growing. You don’t have to worry so much about submitting to different
places, but you have to be aware of Google at all times.

Google’s Importance to Webmasters

But isn’t Google just a search engine web site like any other? Actually, its
reach is far greater than that. Google partners with other sites to use the
Google index results, including the likes of heavyweight properties AOL and
Yahoo!. Not to mention the multitude of sites out there making use of the
Google API. So when you think about potential visitors from Google’s
search results, you have to think beyond traditional search site borders.

It’s becoming ever more important what Google thinks of your site. That
means you're going to be sure that your site abides by the Google rules or
risk not being picked up. If you’re very concerned about search engine traf-
fic, you're going to have to make sure that your site is optimized for luring in
Google’s spiders and being indexed in an effective manner. And if you're
concerned that Google should not index some parts of your site, you need to
understand the ins and outs of configuring your robots.txt file to reflect your
preferences.

The Mysterious PageRank

You'll hear a lot of people talk about Google’s PageRank, bragging about
attaining the misty heights of rank seven or eight, talking in hushed tones of
sites that have achived nine or ten. PageRanks range from 0 (sites that
haven’t been ranked or have been penalized) to 10 (reserved only for the
most popular sites like Yahoo! and Google itself). The only place where you
can actually see what PageRank a given URL has is from the Google Tool-
bar [Hack #24], though you can get some idea of popularity from the Google
Directory. Listings in the Google Directory contain a green bar next to them
that allow you to give a good idea of the listing’s popularity without having
an exact number.

Google has never provided the entire formula for their PageRank, so all
you’ll find in this book is conjecture. And it wouldn’t surprise me to learn
that it’s changing all the time; as millions of people try myriad things to
make sure their pages rank better, Google has to take these efforts into
account and (sometimes) reacted against them.

Why is PageRank so important? Because Google uses that as one aspect of
determining how a given URL will rank among millions of possible search
results, but that’s only one aspect. The other aspects are determined via
Google’s ranking algorithm.

The Equally Mysterious Algorithm

If you thought Google was close-mouthed about how it determine’s Page-
Rank, it’s an absolute oyster when it comes to the ranking algorithm, the
way that Google determines the order of search results. The articles in this
book can give you some ideas, but again it’s conjecture and again it’s con-
stantly changing. Your best bet is to create a content-rich web site and
update it often. Google appreciates good content.

Of course, getting listed in Google’s index is not the only way to tell visitors
about your site. You also have the option to advertise on Google.

288 | The Webmaster Side of Google

A Webmaster's Introduction to Google

Google’s Ad Programs

If the picture that arises when you think of Internet advertising involves peo-
ple in Armani suits pitchforking huge mounds of money into bank vaults,
think again. Huge ad budgets are so 1999. Google’s AdWords programs
allow even small advertisers to do keyword-based advertising on Google’s
search results (or even on the keyword results of Google’s partner sites, if
they wish). In this section, Andrew Goodman chimes in to gives some tips
on how to make the most of your Google Adwords program, and we pro-
vide a scraper that’ll help you save AdWords on results pages if you’re doing
a little research.

Keeping Up with Google’s Changes

With Google having such a leading position in the search engine world, and
so many webmasters looking to Google for traffic, you might guess that
there’s a lot of discussion about Google in various places around the Web.
And you’d be right! My favorite place for Google news and gossip is Web-
master World. It’s not often that you can put the words “civilized” and
“online forums” right next to each other, but I'm doing it now. Discourse on
this site is friendly, informative, and generally flame free. I have learned a lot
from this site.

In a Word: Relax

One of the things I've learned is that a lot of people spend a lot of time wor-
rying about how Google works, and further, they worry about how they can
get the highest possible ranking.

I can appreciate their worry, because search engine traffic means a lot to an
online business. But for the rest of us, we should just relax. As long as we
concentrate on good content that’s good for visitors (and not just spiders),
Google’s ranking algorithms will appreciate our sites.

ﬁ A Webmaster’s Introduction to Google
Steps to take for optimal Google indexing of your site.

The cornerstone of any good search engine is highly relevant results. Goo-
gle’s unprecedented success has been due to its uncanny ability to match
quality information with a user’s search terms. The core of Google’s search
results are based upon a patented algorithm called PageRank.

There is an entire industry focused on getting sites listed near the top of
search engines. Google has proven to be the toughest search engine for a site

The Webmaster Side of Google | 289

A Webmaster’s Introduction to Google

to do well on. Even so, it isn’t all that difficult for a new web site to get listed
and begin receiving some traffic from Google.

It can be a daunting task to learn the ins and outs of getting your site listed
with any search engine. There is a vast array of information about search
engines on the Web, and not all of it is useful or proper. This discussion of
getting your site into the Google database focuses on long term techniques
for successfully promoting your site through Google. It will stay well away
from some of the common misconceptions and problems that a new site
owner faces.

Search Engine Basics

When you type in a search term at a search engine, it looks up potential
matches in its database. It then presents the best web page matches first.
How those web pages get into the database, and consequently, how you can
get yours in there too, is a three step process:

1. A search engine visits a site with an automated program called a spider
(sometimes they’re also called robots). A spider is just a program simi-
lar to a web browser that downloads your site’s pages. It doesn’t actu-
ally display the page anywhere, it just downloads the page data.

2. After the spider has acquired the page, the search engine passes the page
to a program called an indexer. An indexer is another robotic program
that extracts most of the visible portions of the page. The indexer also
analyzes the page for keywords, the title, links, and other important
information contained in the code.

3. The search engine adds your site to its database and makes it available
to searchers. The greatest difference between search engines is in this
final step where rankings or results positions under a particular key-
word are determined.

Submitting Your Site to Google

For the site owner, the first step is to get your pages listed in the database.
There are two ways to get added. The first is direct submission of your site’s
URL to Google via its add URL or Submission page. To counter pro-
grammed robots, search engines routinely move submission pages around on
their sites. You can currently find Google’s submission page linked from their
Help pages or Webmaster Info pages (http://www.google.com/addurl.html).

Just visit the add URL page and enter the main index page for your site into
the Google submission page form, and press submit. Google’s spider (called

290 | The Webmaster Side of Google

A Webmaster's Introduction to Google

GoogleBot) will visit your page usually within four weeks. The spider will
traverse all pages on your site and add them to its index. Within eight
weeks, you should be able to find your site listed in Google.

The second way to get your site listed in Google is to let Google find you. It
does this based upon links that may be pointing to your site. Once Google-
Bot finds a link to your site from a page it already has in its index, it will visit
your site.

Google has been updating its database on a monthly basis for three years. It
sends its spider out in crawler mode once a month too. Crawler mode is a
special mode for a spider when it traverses or crawls the entire Web. As it
runs into links to pages, it then indexes those pages in a never ending
attempt to download all the pages it can. Once your pages are listed in Goo-
gle, they are revisited and updated on a monthly basis. If you frequently
update your content, Google may index your search terms more often.

Once you are indexed and listed in Google, the next natural question for a
site owner is, “How can I rank better under my applicable search terms?”

The Search Engine Optimization Template

This is my general recipe for the ubiquitous Google. It is generic enough that
it works well everywhere. It’s as close as I have come to a “one-size-fits-all”
SEO—that’s Search Engine Optimization—template.

Use your targeted keyword phrase:
* In META keywords. It’s not necessary for Google, but a good habit. Keep
your META keywords short (128 characters max, or 10).
* InMETA description. Keep keyword close to the left but in a full sentence.
* In the title at the far left but possibly not as the first word.

* In the top portion of the page in first sentence of first full bodied para-
graph (plain text: no bold, no italic, no style).

* Inan H3 or larger heading.

* In bold—second paragraph if possible and anywhere but the first usage
on page.

* Initalic—anywhere but the first usage.

* In subscript/superscript.

* In URL (directory name, filename, or domain name). Do not duplicate
the keyword in the URL.

* In an image filename used on the page.

The Webmaster Side of Google | 291

- A Webmaster's Introduction to Google

.

In ALT tag of that previous image mentioned.

In the title attribute of that image.

In link text to another site.

In an internal link’s text.

In title attribute of all links targeted in and out of page.

In the filename of your external CSS (Cascading Style Sheet) or Java-
Script file.

In an inbound link on site (preferably from your home page).
In an inbound link from off site (if possible).
In a link to a site that has a PageRank of 8 or better.

Other search engine optimization things to consider include:

Use “last modified” headers if you can.

Validate that HTML. Some feel Google’s parser has become stricter at
parsing instead of milder. It will miss an entire page because of a few
simple errors—we have tested this in depth.

Use an HTML template throughout your site. Google can spot the tem-
plate and parse it off. (Of course, this also means they are pretty good a
spotting duplicate content.)

Keep the page as .html or .htm extension. Any dynamic extension is a
risk.

Keep the HTML below 20K. 5-15K is the ideal range.

Keep the ratio of text to HTML very high. Text should out weight
HTML by significant amounts.

Double check your page in Netscape, Opera, and IE. Use Lynx if you
have it.

Use only raw HREFs for links. Keep JavaScript far, far away from links.
The simpler the link code the better.

The traffic comes when you figure out that 1 referral a day to 10 pages is
better than 10 referrals a day to 1 page.

Don’t assume that keywords in your site’s navigation template will be
worth anything at all. Google looks for full sentences and paragraphs.
Keywords just laying around orphaned on the page are not worth as
much as when used in a sentence.

—Brett Tabke

292

| The Webmaster Side of Google

i

Generating Google AdWords _

Generating Google AdWords
You've written the copy and you've planned the budget. Now, what keywords
are you going to use for your ad?

You've read about it and you’ve thought about it and you’re ready to buy
one of Google’s AdWords. You've even got your copy together and you feel
pretty confident about it. You’ve only got one problem now: figuring out
your keywords, the search words that will trigger your AdWord to appear.

You're probably buying into the AdWords program on a budget, and you
definitely want to make every penny count. Choosing the right keywords
means that your ad will have a higher clickthrough. Thankfully, the Google
AdWords program allows you to do a lot of tweaking, so if your first choices
don’t work, experiment, test, and test some more!

Choosing AdWords

So where do you get the search keywords for your ad? There are four places
that might help you find them:

Log files
Examine your site’s log files. How are people finding your site now?
What words are they using? What search engines are they using? Are the
words they’re using too general to be used for AdWords? If you look at
your log files, you can get an idea of how people who are interested in
your content are finding your site. (If they weren’t interested in your
content, why would they visit?)

Examine your own site
If you have an internal search engine, check its logs. What are people
searching for once they get to your site? Are there any common mis-
spellings that you could use as an AdWord? Are there any common
phrases you could use?

Brainstorm
What do people think of when they look at your site? What keywords
do you want them to think of? Brainstorm about the product that’s
most closely associated with your site. What words come up?

Imagine someone goes to a store and asks about your products. How
are they going to ask? What words would they use? Consider all the dif-
ferent ways someone could look for or ask about your product or ser-
vice, and then consider if there’s a set of words or a phrase that pops up
over and over again.

The Webmaster Side of Google | 293

Inside the PageRank Algorithm

Glossaries
If you've brainstormed until wax dribbles out your ears but you’re no
closer to coming up with words relevant to your site or product, visit
some online glossaries to jog your brain. The Glossarist (http:/www.
glossarist.com) links to hundreds of glossaries on hundreds of different
subjects. Check and see if they have a glossary relevant to your product
or service, and see if you can pull some words from there.

Exploring Your Competitors’ AdWords

Once you've got a reasonable list of potential keywords for your ad, take
them and run them in the Google search engine. Google rotates advertise-
ments based on the spending cap for each campaign, so even after running a
search three or four times you may see different advertisements each time.
Use the AdWords scraper to save these ads to a file and review them later.

If you find a potential keyword that apparently contains no advertisements,
make a note. When you’re ready to buy an AdWord, you’ll have to check its
frequency; it might not be searched often enough to be a lucrative keyword
for you. But if it is, you'll found a potential advertising spot with no other
ads competing for searchers’ attention.

See Also
* Scraping Google AdWords [Hack #45)
* Getting the Most out of AdWords [Hack #99]

gm Inside the PageRank Algorithm

Delving into the inner-workings of Google PageRank algorithm and how it
affects results.

What Is PageRank?

PageRank is the algorithm used by the Google search engine, originally for-
mulated by Sergey Brin and Larry Page in their paper “The Anatomy of a
Large-Scale Hypertextual Web Search Engine.”

It is based on the premise, prevalent in the world of academia, that the
importance of a research paper can be judged by the number of citations the
paper has from other research papers. Brin and Page have simply trans-
ferred this premise to its web equivalent: the importance of a web page can
be judged by the number of hyperlinks pointing to it from other web pages.

294 | The Webmaster Side of Google

Inside the PageRank Algorithm

So What Is the Algorithm?

It may look daunting to nonmathematicians, but the PageRank algorithm is
in fact elegantly simple and is calculated as follows:

PR(A) = (1-d+d(PRTL +..+ PR(Tm)

where:
* PR(A) is the PageRank of a page A.
* PR(T1) is the PageRank of a page T1.
* C(T1) is the number of outgoing links from the page T1.
* dis a damping factor in the range 0 < d < 1, usually set to 0.85.

The PageRank of a web page is therefore calculated as a sum of the Page-
Ranks of all pages linking to it (its incoming links), divided by the number of
links on each of those pages (its outgoing links).

And What Does This Mean?

From a search engine marketer’s point of view, this means there are two
ways in which PageRank can affect the position of your page on Google:

* The number of incoming links. Obviously the more of these, the better.
But there is another thing the algorithm tells us: no incoming link can
have a negative effect on the PageRank of the page it points at. At worst,
it can simply have no effect at all.

* The number of outgoing links on the page that points to your page. The
fewer of these, the better. This is interesting: it means given two pages
of equal PageRank linking to you, one with 5 outgoing links and the
other with 10, you will get twice the increase in PageRank from the page
with only 5 outgoing links.

At this point, we take a step back and ask ourselves just how important
PageRank is to the position of your page in the Google search results.

The next thing we can observe about the PageRank algorithm is that it has
nothing whatsoever to do with relevance to the search terms queried. It is
simply one single (admittedly important) part of the entire Google relevance
ranking algorithm.

Perhaps a good way to look at PageRank is as a multiplying factor, applied
to the Google search results after all its other computations have been com-
pleted. The Google algorithm first calculates the relevance of pages in its

The Webmaster Side of Google | 295

Inside the PageRank Algorithm

index to the search terms, and then multiplies this relevance by the Page-
Rank to produce a final list. The higher your PageRank, therefore, the higher
up the results you will be, but there are still many other factors related to the
positioning of words on the page that must be considered first.

So What's the Use of the PageRank Calculator?

If no incoming link has a negative effect, surely I should just get as many as
possible, regardless of the number of outgoing links on its page?

Well, not entirely. The PageRank algorithm is very cleverly balanced. Just
like the conservation of energy in physics with every reaction, PageRank is
also conserved with every calculation. For instance, if a page with a starting
PageRank of 4 has two outgoing links on it, we know that the amount of
PageRank it passes on is divided equally between all its outgoing links. In
this case, 4 / 2 = 2 units of PageRank is passed on to each of 2 separate
pages, and 2 + 2 = 4—so the total PageRank is preserved!

There are scenarios where you may find that total PageRank
is not conserved after a calculation. PageRank itself is sup-
posed to represent a probability distribution, with the indi-

vidual PageRank of a page representing the likelihood of a
“random surfer” chancing upon it.

On a much larger scale, supposing Google’s index contains a billion pages,
each with a PageRank of 1, the total PageRank across all pages is equal to a
billion. Moreover, each time we recalculate PageRank, no matter what
changes in PageRank may occur between individual pages, the total Page-
Rank across all 1 billion pages will still add up to a billion.

First, this means that although we may not be able to change the total Page-
Rank across all pages, by strategic linking of pages within our site, we can
affect the distribution of PageRank between pages. For instance, we may
want most of our visitors to come into the site through our home page. We
would therefore want our home page to have a higher PageRank relative to
other pages within the site. We should also recall that all the PageRank of a
page is passed on and divided equally between each outgoing link on a page.
We would therefore want to keep as much combined PageRank as possible
within our own site without passing it on to external sites and losing its ben-
efit. This means we would want any page with lots of external links (i.e.,
links to other people’s web sites) to have a lower PageRank relative to other
pages within the site to minimize the amount of PageRank that is “leaked”
to external sites. Bear in mind also our earlier statement, that PageRank is

296 | The Webmaster Side of Google

Inside the PageRank Algorithm |

simply a multiplying factor applied once Google’s other calculations regard-
ing relevance have already been calculated. We would therefore want our
more keyword-rich pages to also have a higher relative PageRank.

Second, if we assume that every new page in Google’s index begins its life
with a PageRank of 1, there is a way we can increase the combined Page-
Rank of pages within our site—by increasing the number of pages! A site
with 10 pages will start life with a combined PageRank of 10, which is then
redistributed through its hyperlinks. A site with 12 pages will therefore start
with a combined PageRank of 12. We can thus improve the PageRank of our
site as a whole by creating new content (i.e., more pages), and then control
the distribution of that combined PageRank through strategic interlinking
between the pages.

And this is the purpose of the PageRank Calculator—to create a model of
the site on a small scale including the links between pages, and see what
effect the model has on the distribution of PageRank.

How Does the PageRank Calculator Work?

To get a better idea of the realities of PageRank, visit the PageRank Calcula-
tor (http://www.markhorrell.com/seo/pagerank.asp).

It’s very simple really. Start by typing in the number of interlinking pages
you wish to analyze and hit Submit. I have confined this number to just 20
pages to ease server resources. Even so, this should give a reasonable indica-
tion of how strategic linking can affect the PageRank distribution.

Next, for ease of reference once the calculation has been performed, provide
a label for each page (e.g., Home Page, Links Page, Contact Us Page, etc.)
and again hit Submit.

Finally, use the list boxes to select which pages each page links to. You can
use Ctrl and Shift to highlight multiple selections.

You can also use this screen to change the initial PageRanks of each page.
For instance, if one of your pages is supposed to represent Yahoo!, you may
wish to raise its initial PageRank to, say, 3. However, in actual fact, starting
PageRank is irrelevant to its final computed value. In other words, even if
one page were to start with a PageRank of 100, after many iterations of the
equation (see below), the final computed PageRank will converge to the
same value as it would had it started with: a PageRank of only 1!

You can play around with the damping factor d, which defaults to 0.85 as
this is the value quoted in Brin and Page’s research paper.

—Mark Horrell

The Webmaster Side of Google | 297

196

26 Steps to 15K a Day

26 Steps to 15K a Day

Solid content thoughfully prepared can make more impact than a decade’s
worth of fiddling with META tags and building the perfect title page.

Too often, getting visitors from search engines is boiled down to a succes-
sion of tweaks that may or may not work. But as Brett Tabke shows in this
section, solid content thoughfully put together can make more impact than a
decade’s worth of fiddling with META tags and building the perfect title page.

From A to Z, following these 26 steps will build you a successful site, bring-
ing in plenty of visitors from Google.

A. Prep Work

Prepare work and begin building content. Long before the domain name is
settled on, start putting together notes to build at least a 100 page site.
That’s just for openers. That’s 100 pages of “real content,” as opposed to
link pages, resource pages, about, copyright—necessary but not content-rich
pages.

Can’t think of 100 pages’ worth of content? Consider articles about your
business or industry, Q&A pages, or back issues of an online newsletter.

B. Choose a Brandable Domain Name

Choose a domain name that’s easily brandable. You want Google.com and
not Mykeyword.com.

Keyword domains are out; branding and name recognition are in. Big time in.
The value of keywords in a domain name have never been less to search
engines. Learn the lesson of Goto.com becoming Overture.com and why they
did it. It’s one of the powerful gut check calls I've ever seen on the Internet.
That took resolve and nerve to blow away several years of branding. (That’s a
whole ‘nuther article, but learn the lesson as it applies to all of us).

C. Site Design

The simpler your site design, the better. As a rule of thumb: text content
should outweigh the HTML content. The pages should validate and be
usable in everything from Lynx to leading browsers. In other words, keep it
close to HTML 3.2 if you can. Spiders are not to the point they really like
eating HTML 4.0 and the mess that it can bring. Stay away from heavy
Flash, Java, or JavaScript.

298 | The Webmaster Side of Google

26 Steps to 15K a Day

Go external with scripting languages if you must have them, though there’s
little reason to have them that I can see. They will rarely help a site and stand
to hurt it greatly due to many factors most people don’t appreciate (the
search engines’ distaste for JavaScript is just one of them). Arrange the site in
a logical manner with directory names hitting the top keywords you wish to
emphasize. You can also go the other route and just throw everything in the
top level of the directory (this is rather controversial, but it’s been producing
good long term results across many engines). Don’t clutter and don’t spam
your site with frivolous links like “best viewed” or other things like counters.
Keep it clean and professional to the best of your ability.

Learn the lesson of Google itself: simple is retro cool. Simple is what surfers
want.

Speed isn’t everything, it’s almost the only thing. Your site should respond
almost instantly to a request. If your site has three to four seconds’ delay
until “something happens” in the browser, you are in long term trouble.
That three to four seconds response time may vary in sites destined to be
viewed in other countries than your native one. The site should respond
locally within three to four seconds (maximum) to any request. Longer than
that, and you’ll lose 10% of your audience for each additional second. That
10% could be the difference between success and not.

D. Page Size

The smaller the page size, the better. Keep it under 15K, including images, if
you can. The smaller the better. Keep it under 12K if you can. The smaller
the better. Keep it under 10K if you can—I trust you are getting the idea
here. Over 5K and under 10K. It’s tough to do, but it’s worth the effort.
Remember, 80% of your surfers will be at 56K or even less.

E. Content

Build one page of content (between 200-500 words) per day and put it
online.

If you aren’t sure what you need for content, start with the Overture key-
word suggestor (http://inventory.overture.com/d/searchinventory/suggestion/)
and find the core set of keywords for your topic area. Those are your sub-
ject starters.

F. Keyword Density and Keyword Positioning

This is simple, old fashioned, SEO (Search Engine Optimization) from the
ground up.

The Webmaster Side of Google | 299

| 26 Steps to 15K a Day

Use the keyword once in title, once in description tag, once in a heading,
once in the URL, once in bold, once in italic, once high on the page, and
make sure the density is between 5 and 20% (don’t fret about it). Use good
sentences and spellcheck them! Spellchecking is becoming important as
search engines are moving to autocorrection during searches. There is no
longer a reason to look like you can’t spell.

G. Outbound Links

From every page, link to one or two high ranking sites under the keyword
you're trying to emphasize. Use your keyword in the link text (this is ultra
important for the future).

H. Cross-Links
Cross links are links within the same site.

Link to on-topic quality content across your site. If a page is about food,
make sure it links to the apples and veggies page. With Google, on-topic
cross-linking is very important for sharing your PageRank value across your
site. You do not want an “all star” page that outperforms the rest of your
site. You want 50 pages that produce one referral each a day; you don’t want
one page that produces 50 referrals a day. If you do find one page that dras-
tically outproduces the rest of the site with Google, you need to offload
some of that PageRank value to other pages by cross-linking heavily. It’s the
old share-the-wealth thing.

|. Put It Online
Don’t go with virtual hosting; go with a standalone IP address.

Make sure the site is “crawlable” by a spider. All pages should be linked to
more than one other page on your site, and not more than two levels deep
from the top directory. Link the topic vertically as much as possible back to
the top directory. A menu that is present on every page should link to your
site’s main “topic index” pages (the doorways and logical navigation system
down into real content). Don’t put it online before you have a quality site to
put online. It’s worse to put a “nothing” site online than no site at all. You
want it fleshed out from the start.

Go for a listing in the ODP (the Open Directory Project, http://dmoz.org/add.
html). Getting accepted to the Open Directory project will probably get your
pages listed in the Google Directory.

300 | The Webmaster Side of Google

26 Stepsto 15K aDay |

J. Submit

Submit your main URL to: Google, FAST, AltaVista, WiseNut, Teoma,
DirectHit, and Hotbot. Now comes the hard part: forget about submissions
for the next six months. That’s right, submit and forget.

K. Logging and Tracking

Get a quality logger/tracker that can do justice to inbound referrals based on
log files. Don’t use a graphic counter; you need a program that’s going to
provide much more information than that. If your host doesn’t support
referrers, back up and get a new host. You can’t run a modern site without
full referrals available 24/7/365 in real time.

L. Spiderings

Watch for spiders from search engines—one reason you need a good logger
and tracker! Make sure those that are crawling the full site can do so easily.
If not, double-check your linking system to make sure the spider found its
way throughout the site. Don’t fret if it takes two spiderings to get your
whole site done by Google or FAST. Other search engines are pot luck; with
them, it’s doubtful that you will be added at all if you haven’t been added
within 6 months.

M. Topic Directories

Almost every keyword sector has an authority hub on it’s topic. Find it
(Google Directory can be very helpful here, because you can view sites based
on how popular they are) and submit within the guidelines.

N. Links

Look around your keyword section in the Google Directory; this is best
done after getting an Open Directory Project listing—or two. Find sites that
have link pages or freely exchange links. Simply request a swap. Put a page
of on-topic, in-context links up on your site as a collection spot. Don’t
worry if you can’t get people to swap links—move on. Try to swap links
with one fresh site a day. A simple personal email is enough. Stay low key
about it and don’t worry if site Z won’t link to you. Eventually they will.

0. Content

Add one page of quality content per day. Timely, topical articles are always
the best. Try to stay away from too much weblogging personal materials and
look more for “article” topics that a general audience will like. Hone your

The Webmaster Side of Google | 301

. 26 Steps to 15K a Day

writing skills and read up on the right style of “web speak” that tends to
work with the fast and furious web crowd: lots of text breaks—short sen-
tences—lots of dashes—something that reads quickly.

Most web users don’t actually read, they scan. This is why it is so important
to keep key pages to a minimum. If people see a huge overblown page, a
portion of them will hit the back button before trying to decipher it. They’ve
got better things to do than waste 15 seconds (a stretch) at understanding
your whizbang menu system. Because some big support site can run Flash-
heavy pages is no indication that you can. You don’t have the pull factor
they do.

Use headers and bold standout text liberally on your pages as logical separa-
tors. I call them scanner stoppers where the eye will logically come to rest on
the page.

P. Gimmicks

Stay far away from any “fades of the day” or anything that appears spammy,
unethical, or tricky. Plant yourself firmly on the high ground in the middle
of the road.

Q. Linkbacks

When you receive requests for links, check sites out before linking back to
them. Check them through Google for their PageRank value. Look for direc-
tory listings. Don’t link back to junk just because they asked. Make sure it is
a site similar to yours and on topic. Linking to “bad neighborhoods,” as
Google calls them, can actually cost you PageRank points.

R. Rounding Out Your Offerings

Use options such as “email a friend,” forums, and mailing lists to round out
your site’s offerings. Hit the top forums in your market and read, read, read
until your eyes hurt. Stay away from “affiliate fades” that insert content on
to your site like banners and pop-up windows.

S. Beware of Flyer and Brochure Syndrome

If you have an economical site or online version of bricks and mortar, be
careful not to turn your site into a brochure. These don’t work at all. Think
about what people want. They aren’t coming to your site to view “your con-
tent,” they are coming to your site looking for “their content.” Talk as little
about your products and yourself as possible in articles (sounds counterintu-
itive, doesn't it?)

302 | The Webmaster Side of Google

26 Steps to 15K a Day

T. Keep Building One Page of Content Per Day

Head back to the Overture suggestion tool to get ideas for fresh pages.

U. Study Those Logs

After a month or two you will start to see a few referrals from places you've
gotten listed. Look for the keywords people are using. See any bizarre com-
binations? Why are people using those to find your site? If there is some-
thing you have overlooked, then build a page around that topic. Engineer
your site to feed the search engine what it wants. If your site is about
oranges, but your referrals are all about orange citrus fruit, then you can get
busy building articles around citrus and fruit instead of the generic oranges.
The search engines will tell you exactly what they want to be fed; listen
closely! There is gold in referral logs, it’s just a matter of panning for it.

V. Timely Topics

Nothing breeds success like success. Stay abreast of developments in your
topic of interest. If big site Z is coming out with product A at the end of the
year, build a page and have it ready in October so that search engines get it
by December.

W. Friends and Family

Networking is critical to the success of a site. This is where all that time you
spend in forums will pay off. Here’s the catch-22 about forums: lurking is
almost useless. The value of a forum is in the interaction with your fellow
colleagues and cohorts. You learn long term by the interaction, not by just
reading. Networking will pay off in linkbacks, tips, email exchanges, and
will generally put you “in the loop” of your keyword sector.

X. Notes, Notes, Notes

If you build one page per day, you will find that brainstorm-like inspiration
will hit you in the head at some magic point. Whether it is in the shower
(dry off first), driving down the road (please pull over), or just parked at
your desk, write it down! Ten minutes of work later, you will have forgotten
all about that great idea you just had. Write it down and get detailed about
what you are thinking. When the inspirational juices are no longer flowing,
come back to those content ideas. It sounds simple, but it’s a lifesaver when
the ideas stop coming.

The Webmaster Side of Google | 303

~ #97 Being a Good Search Engine Citizen

Y. Submission Check at Six Months

Walk back through your submissions and see if you got listed in all the
search engines you submitted to after six months. If not, resubmit and for-
get again. Try those freebie directories again, too.

Z. Keep Building Those Pages of Quality Content!

Starting to see a theme here? Google loves content, lots of quality content.
The content you generate should be based around a variety of keywords. At
the end of a year’s time, you should have around 400 pages of content. That
will get you good placement under a wide range of keywords, generate recip-
rocal links, and overall position your site to stand on its own two feet.

Do those 26 things, and I guarantee you that in one year’s time you will call
your site a success. It will be drawing between 500 and 2,000 referrals a day
from search engines. If you build a good site and achieve an average of 4 to 5
pageviews per visitors, you should be in the 10-15K page views per day
range in one year’s time. What you do with that traffic is up to you!

—Brett Tabke

Ji e Being a Good Search Engine Citizen

97 Five don'ts and one do for getting your site indexed by Google.

A high ranking in Google can mean a great deal of traffic. Because of that,
there are lots of people spending lots of time trying to figure out the infalli-
ble way to get a high ranking from Google. Add this. Remove that. Get a
link from this. Don’t post a link to that.

Submitting your site to Google to be indexed is simple enough. Google’s got
a site submission form (http://www.google.com/addurl.html), though they say
if your site has at least a few inbound links (other sites that link to you), they
should find you that way. In fact, Google encourages URL submitters to get
listed on The Open Directory Project (DMOZ, http://www.dmoz.org/) or
Yahoo! (http://www.yahoo.com/).

Nobody knows the holy grail secret of high page rank without effort. Goo-
gle uses a variety of elements, including page popularity, to determine page
rank. Page rank is one of the factors determining how high up a page
appears in search results. But there are several things you should not be
doing combined with one big thing you absolutely should.

304 | The Webmaster Side of Google

Being a Good Search Engine Citizen

Does breaking one of these rules mean that you’re automatically going to be
thrown out of Google’s index? No; there are over 2 billion pages in Goo-
gle’s index at this writing, and it’s unlikely that they’ll find out about your
rule-breaking immediately. But there’s a good chance they’ll find out even-
tually. Is it worth it having your site removed from the most popular search
engine on the Internet?

Thou shalt not:

Cloak. “Cloaking” is when your web site is set up such that search engine
spiders get different pages from those human surfers get. How does the
web site know which are the spiders and which are the humans? By
identifying the spider’s User Agent or [P—the latter being the more reli-
able method.

An IP (Internet Protocol) address is the computer address from which a
spider comes from. Everything that connects to the Internet has an IP
address. Sometimes the IP address is always the same, as with web sites.
Sometimes the IP address changes—that’s called a dynamic address. (If
you use a dial-up modem, chances are good that every time you log on
to the Internet your IP address is different. That’s a dynamic IP address.)

A “User Agent” is a way a program that surfs the Web identifies itself.
Internet browsers like Mozilla use User Agents, as do search engine spi-
ders. There are literally dozens of different kinds of User Agents; see the
Web Robots Database (http://www.robotstxt.org/wc/active.html) for an
extensive list.

Advocates of cloaking claim that cloaking is useful to absolutely opti-
mize content for spiders. Anticloaking critics claim that cloaking is an
easy way to misrepresent site content—feeding a spider a page that’s
designed to get the site hits for pudding cups when actually it’s all about
baseball bats. You can get more details about cloaking and different per-
spectives on it at http://pandecta.com/search_engines/cloaking.html, http:/
/www.apromotionguide.com/cloaking.html, and http://'www.webopedia.
com/TERM/C/cloaking.html.

Hide text. Text is hidden by putting words or links in a web page that are
the same color as the page’s background—putting white words on a
white background, for example. This is also called “fontmatching.”
Why would you do this? Because a search engine spider could read the
words you’ve hidden on the page while a human visitor couldn’t. Again,
doing this and getting caught could get you banned from Google’s
index, so don’t.

The Webmaster Side of Google | 305

Being a Good Search Engine Citizen

That goes for other page content tricks too, like title stacking (putting
multiple copies of a title tag on one page), putting keywords in com-
ment tags, keyword stuffing (putting multiple copies of keywords in
very small font on page), putting keywords not relevant to your site in
your META tags, and so on. Google doesn’t provide an exhaustive list of
these types of tricks on their site, but any attempt to circumvent or fool
their ranking system is likely to be frowned upon. Their attitude is more
like: “You can do anything you want to with your pages, and we can do
anything we want to with our index—Tlike exclude your pages.”

Use doorway pages. Sometimes doorway pages are called “gateway pages.”

These are pages that are aimed very specifically at one topic, which don’t
have a lot of their own original content, and which lead to the main page
of a site (thus the name doorway pages).

For example, say you have a page devoted to cooking. You create door-
way pages for several genres of cooking—French cooking, Chinese
cooking, vegetarian cooking, etc. The pages contain terms and META tags
relevant to each genre, but most of the text is a copy of all the other
doorway pages, and all it does is point to your main site.

This is illegal in Google and annoying to the Google-user; don’t do it.
You can learn more about doorway pages at http://searchenginewatch.
com/webmasters/bridge.html or http://www.searchengineguide.com/
whalen/2002/0530_jw1.html.

Check your link rank with automated queries. Using automated queries

(except for the sanctioned Google API) is against Google’s Terms of Ser-
vice anyway. Using an automated query to check your PageRank every
12 seconds is triple bad; it’s not what the search engine was built for
and Google probably considers it a waste of their time and resources.

Link to “bad neighborhoods”. Bad neighborhoods are those sites that exist

only to propagate links. Because link popularity is one aspect of how
Google determines PageRank, some sites have set up “link farms”—sites
that exist only for the purpose of building site popularity with bunches
of links. The links are not topical, like a specialty subject index, and
they’re not well-reviewed, like Yahoo!; they’re just a pile of links.
Another example of a “bad neighborhood” is a general FFA page. FFA
stands for “free for all”; it’s a page where anyone can add their link.
Linking to pages like that is grounds for a penalty from Google.

Now, what happens if a page like that links to you? Will Google penal-
ize you page? No. Google accepts that you have no control over who
links to your site.

| The Webmaster Side of Google

Cleaning Up for a Google Visit

Thou shalt:

Create great content. All the HTML contortions in the world will do you
little good if you've got lousy, old, or limited content. If you create great
content and promote it without playing search engine games, you’ll get
noticed and you’ll get links. Remember Sturgeon’s Law (“Ninety per-
cent of everything is crud.”) Why not make your web site an exception?

What Happens if You Reform?

Maybe you've got a site that’s not exactly the work of a good search engine
citizen. Maybe you’ve got 500 doorway pages, 10 title tags per page, and
enough hidden text to make an O’Reilly Pocket Guide. But maybe now you
want to reform. You want to have a clean lovely site and leave the doorway
pages to Better Homes and Gardens. Are you doomed? Will Google ban your
site for the rest of its life?

No. The first thing you need to do is clean up your site—remove all traces of
rule breaking. Next, send a note about your site changes and the URL to
help@google.com. Note that Google really doesn’t have the resources to
answer every email about why they did or didn’t index a site—otherwise,
they’d be answering emails all day—and there’s no guarantee that they will
reindex your kinder, gentler site. But they will look at your message.

What Happens if You Spot Google Abusers in the Index?

What if some other site that you come across in your Google searching is
abusing Google’s spider and pagerank mechanism? You have two options.
You can send an email to spamreport@google.com or fill out the form at
http:/fwww.google.com/contact/spamreport.html. (I'd fill out the form; it
reports the abuse in a standard format that Google’s used to seeing.)

R : Cleaning Up for a Google Visit
98 Before you submit your site to Google, make sure you've cleaned it up to
make the most of your indexing.

You clean up your house when you have important guests over, right? Goo-
gle’s crawler is one of the most important guests you site will ever have if
you want visitors. A high Google ranking can lead to incredible numbers of
referrals, both from Google’s main site and those site that have search pow-
ered by Google.

The Webmaster Side of Google | 307

. Cleaning Up for a Google Visit

To make the most of your listing, step back and look at your site. By mak-
ing some adjustments, you can make your site both more Google-friendly
and more visitor-friendly.

If you must use a splash page, have a text link from it. 1f I had a dollar for

every time I went to the front page of a site and saw no way to navigate
besides a Flash movie, I'd be able to nap for a living. Google doesn’t
index Flash files, so unless you have some kind of text link on your
splash page (a “Skip This Movie” link, for example, that leads into the
heart of your site) you’re not giving Google’s crawler anything to work
with. You're also making it difficult for surfers who don’t have Flash or
are visually impaired.

Make sure your internal links work. Sounds like a no-brainer, doesn’t it?

Make sure your internal page links work so the Google crawler can get
to all your site’s pages. You'll also make sure your visitors can navigate.

Check your title tags. There are few things sadder than getting a page of

search results and finding “Insert Your Title Here” as the title for some
of them. Not quite as bad is getting results for the same domain and see-
ing the exact same title tag over and over and over and over.

Look. Google makes it possible to search just the title tags in its index.
Further, the title tags are very easy to read on Google’s search results
and are an easy way for a surfer to quickly get an idea of what a page is
all about. If you’re not making the most of your title tag you're miss-
ing out on a lot of attention on your site.

The perfect title tag, to me, says something specific about the page it
heads, and is readable to both spiders and surfers. That means you don’t
stuff it with as many keywords as you can. Make it a readable sentence,
or—and I've found this useful for some pages—make it a question.

Check your META tags. Google sometimes relies on META tags for a site

description when there’s a lot of navigation code that wouldn’t make
sense to a human searcher. I'm not crazy about META tags, but I'd make
sure that at least the front page of my web site had a description and
keyword META tag set, especially if your site relies heavily on code-based
navigation (like from JavaScript).

Check your ALT tags. Do you use a lot of graphics on your pages? Do you

have ALT tags for them so that visually impaired surfers and the Google
spider can figure out what those graphics are? If you have a splash page
with nothing but graphics on it, do you have ALT tags on all those graph-
ics so a Google spider can get some idea of what your page is all about?
ALT tags are perhaps the most neglected aspect of a web site. Make sure
yours are set up.

| The Webmaster Side of Google

Getting the Most out of AdWords %

By the way, just because ALT tags are a good idea, don’t go crazy. You
don’t have to explain in your ALT tags that a list bullet is a list bullet.
You canjust mark it with a *.

Check your frames. If you use frames, you might be missing out on some
indexing. Google recommends you read Danny Sullivan’s article,
“Search Engines and Frames,” at http://www.searchenginewatch.com/
webmasters/frames.html. Be sure that Google can either handle your
frame setup or that you’ve created an alternative way for Google to visit,
such as using the NOFRAMES tag.

Consider your dynamic pages. Google says they “limit the number of
amount of dynamic pages” they index. Are you using dynamic pages?
Do you have to?

Consider how often you update your content. There is some evidence that
Google indexes popular pages with frequently updated content more
often. How often do you update the content on your front page?

Make sure you have a robots.txt file if you need one. If you want Google to
index your site in a particular way, make sure you’ve got a robots.txt file
for the Google spider to refer to. You can learn more about robots.txt in
general at http://www.robotstxt.org/wc/norobots.html.

If you don’t want Google to cache your pages, you can add a line to every
page that you don’t want cached. Add this line to the <HEAD> section of
your page:
<META NAME="ROBOTS" CONTENT="NOARCHIVE">
This will tell all robots that archive content, including engines like Day-
pop and Gigablast, not to cache your page. If you want to exclude just
the Google spider from caching your page, you’d use this line:
<META NAME="GOOGLEBOT" CONTENT="NOARCHIVE">

i@ Getting the Most out of AdWords

Guest commentary by Andrew Goodman of Traffick on how to write great
AdWords.

AdWords (https://ladwords.google.com/select/?hl=en) is just about the sort of
advertising program you might expect to roll out of the big brains at Goo-
gle. The designers of the advertising system have innovated thoroughly to
provide precise targeting at low cost with less work—it really is a good deal.
The flipside is that it takes a fair bit of savvy to get a campaign to the point
where it stops failing and starts working.

The Webmaster Side of Google | 309

| Getting the Most out of AdWords

For larger advertisers, AdWords Select is a no-brainer. Within a couple of
weeks, a larger advertiser will have enough data to decide whether to signifi-
cantly expand their ad program on AdWords Select or perhaps to upgrade
to a premium sponsor account.

I’'m going to assume you have a basic familiarity with how cost-per-click
advertising works. AdWords Select ads currently appear next to search
results on Google.com (and some international versions of the search
engine) and near search results on AOL and a few other major search desti-
nations. There are a great many quirks and foibles to this form of advertis-
ing. My focus here will be on some techniques that can turn a mediocre,
nonperforming campaign into one that actually makes money for the adver-
tiser while conforming to Google’s rules and guidelines.

One thing I should make crystal clear is that advertising with Google bears
no relationship to having your web site’s pages indexed in Google’s search
engine. The search engine remains totally independent of the advertising
program. Ad results never appear within search results.

I'm going to offer four key tips for maximizing AdWords Select campaign
performance, but before I do, I'll start with four basic assumptions:

* High CTRs (click-through rates) save you money, so that should be one
of your main goals as an AdWords Select advertiser. Google has set up
the keyword bidding system to reward high-CTR advertisers. Why? It’s
simple. If two ads are each shown 100 times, the ad that is clicked on
eight times generates revenue for Google twice as often as the ad that is
clicked on four times over the same stretch of 100 search queries served.
So if your CTR is 4% and your competitor’s is only 2%, Google factors
this into your bid. Your bid is calculated as if it were “worth” twice as
much as your competitor’s bid.

* Very low CTRs are bad. Google disables keywords that fall below a min-
imum CTR threshold (“0.5% normalized to ad position,” which is to
say, 0.5% for position 1, and a more forgiving threshold for ads as they
fall further down the page). Entire campaigns will be gradually disabled
if they fall below 0.5% CTR on the whole.

* Editorial disapprovals are a fact of life in this venue. Your ad copy or
keyword selections may violate Google’s editorial guidelines from time
to time. Again, it’s very difficult to run a successful campaign when
large parts of it are disabled. You need to treat this as a normal part of
the process rather than giving up or getting flustered.

310 | The Webmaster Side of Google

* The AdWords Select system is set up like an advertising laboratory; that
is to say, it makes experimenting with keyword variations and small
variations in ad copy a snap. No guru can prejudge for you what will be
your “magical ad copy secrets,” and it would be irresponsible to do so,
because Google offers such detailed real-time reporting that can tell you
very quickly what does and does not catch people’s attention.

Now onto four tips to get those CTRs up and to keep your campaign from
straying out of bounds.

Matching Can Make a Dramatic Difference

You’ll likely want to organize your campaign’s keywords and phrases into
several distinct “ad groups” (made easy by Google’s interface). This will
help you more closely match keywords to the actual words that appear in
the title of your ad. Writing slightly different ads to closely correspond to
the words in each group of keywords you've put together is a great way to
improve your clickthrough rates. You’d think that an ad title (say, “Deluxe
Topsoil in Bulk”) would match equally well to a range of keywords that
mean essentially the same thing. That is, you'd think this ad title would cre-
ate about the same CTR with the phrase “bulk topsoil” as it would with a
similar phrase (“fancy dirt wholesaler”). Not so. Exact matches tend to get
significantly higher CTRs. Being diligent about matching your keywords rea-
sonably closely to your ad titles will help you outperform your less diligent
competition.

If you have several specific product lines, you should consider better match-
ing different groups of key phrases to an ad written expressly for each prod-
uct line. If your clients like your store because you offer certain specialized
wine varieties, for example, have an ad group with “ice wine” and related
keywords in it, with “ice wine” in the ad title. Don’t expect the same generic
ad to cover all your varieties. Someone searching for an “ice wine” expert
will be thrilled to find a retailer who specializes in this area. They probably
won’t click on or buy from a retailer who just talks about wine in general.
Search engine users are passionate about something, and their queries are
highly granular. Take advantage of this passion and granularity.

The other benefit of getting more granular and matching keywords to ad
copy is that you don’t pay for clicks from unqualified buyers, so your sales
conversion rate is likely to be much higher.

The Webmaster Side of Google | 311

- #99 Getting the Most out of AdWords

Copywriting Tweaks Generally Involve Improving Clarity and
Directness

By and large, I don’t run across major copywriting secrets. Psychological
tricks to entice more people to click, after all, may wind up attracting
unqualified buyers. But there are times when the text of an ad falls outside
the zone of “what works reasonably well.” In such cases, excessively low
CTRs kill any chance your web site might have had to close the sale.

Consider using the Goldilocks method to diagnose poor-performing ads.
Many ads lean too far to the “too cold” side of the equation. Overly techni-
cal jargon may be unintelligible and uninteresting even to specialists, espe-
cially given that this is still an emotional medium and that people are
looking at search results first and glancing at ad results as a second thought.

The following example is “too cold™:

Faster DWMGT Apps

Build GMUI modules 3X more secure than KLT. V. 2.0 rated as

"best pligtonferg" by WRSS Mag.
No one clicks. Campaign limps along. Web site remains world’s best kept
secret.

So then a “hotshot” (the owner’s nephew) grabs the reins and tries to put
some juice into this thing. Unfortunately, this new creative genius has been
awake for the better part of a week, attending raves, placing second in a
snowboarding competition, and tending to his various piercings. His agency
work for a major Fortune 500 client’s television spots once received rave
reviews. Of course, those were rave reviews from industry pundits and his
best friends, because the actual ROI on the big client’s TV “branding” cam-
paign was untrackable.

The hotshot’s copy reads:

Reemar's App Kicks!

Reemar ProblemSolver 2.0 is the real slim shady. Don't trust

your Corporate security to the drones at BigCorp.
Unfortunately, in a non-visual medium with only a few words to work with,
the true genius of this ad is never fully appreciated. Viewers don’t click and
may be offended by the ad and annoyed with Google.

The simple solution is something unglamorous but clear, such as:

Easy & Powerful Firewall
Reemar ProblemSolver 2.0 outperforms BigCorp
Exacerbator 3 to 1 in industry tests.

312 | The Webmaster Side of Google

Getting the Most out of AdWords

You can’t say it all in a short ad. This gets enough specific (and true) info
out there to be of interest to the target audience. Once they click, there will
be more than enough info on your web site. In short, your ads should be
clear. How’s that for a major copywriting revelation?

The nice thing is, if you’re bent on finding out for yourself, you can test the
performance of all three styles quickly and cheaply, so you don’t have to
spend all week agonizing about this.

Be Inquisitive and Proactive with Editorial Policies (But Don’t
Whine)

Editorial oversight is a big task for Google AdWords staff—a task that often
gets them in hot water with advertisers, who don’t like to be reined in. For
the most part, the rules are in the long term best interest of this advertising
medium, because they’re aimed at maintaining consumer confidence in the
quality of what appears on the page when that consumer types something
into a search engine. Human error, however, may mean that your campaign
is being treated unfairly because of a misunderstanding. Or maybe a rule is
ambiguous and you just don’t understand it.

Reply to the editorial disapproval messages (they generally come from
adwords-support@google.com). Ask questions until you are satisfied that the
rule makes sense as it applies to your business. The more Google knows
about your business, in turn, the more they can work with you to help you
improve your results, so don’t hesitate to give a bit of brief background in
your notes to them. The main thing is, don’t let your campaign just sit there
disabled because you’re confused or angry about being “disapproved.”
Make needed changes, make the appropriate polite inquiries, and move on.

Avoid the Trap of “Insider Thinking” and Pursue the Advantage
of Granular Thinking

Using lists of specialized keywords will likely help you to reach interested
consumers at a lower cost per click and convert more sales, than using more
general industry keywords. Running your ad on keywords from specialized
vocabularies is a sound strategy.

A less successful strategy, though, is to get lost in your own highly special-
ized social stratum when considering how to pitch your company. Remem-
ber that this medium revolves around consumer search engine behavior.
You won’t win new customers by generating a list of different ways of stat-
ing terminology that only management, competitors, or partners might actu-
ally use, unless your ad campaign is just being run for vanity’s sake.

The Webmaster Side of Google | 313

. Getting the Most out of AdWords

Break things down into granular pieces and use industry jargon where it
might attract a target consumer, but when you find yourself listing phrases
that only your competitors might know or buzzwords that came up at the last
interminable management meeting, stop! You've started down the path of
insider thinking! By doing so, you may have forgotten about the customer
and about the role market research must play in this type of campaign.

It sounds simple to say it, but in your AdWords Select keyword selection,
you aren’t describing your business. You're trying to use phrases that con-
sumers would use when trying to describe a problem they’re having, a spe-
cific item they’re searching for, or a topic that they’re interested in. Mission
statements from above versus what customers and prospects actually type
into search engines. Big difference. (At this point, if you haven’t yet done so,
you’d better go back and read over The Cluetrain Manifesto to get yourself
right out of this top-down mode of thinking.)

One way to find out about what consumers are looking for is to use
Wordtracker (http://www.wordtracker.com) or other keyword research tools
(such as the one that Google offers as part of the AdWords Select interface, a
keyword research tool Google promises it’s working on). However, these
tools are not in themselves enough for every business; because more busi-
nesses are using these “keyphrase search frequency reports,” the frequently
searched terms eventually become picked over by competing advertisers—
just what you want to avoid if you're trying to sneak along with good
response rates at a low cost per click.

You'll need to brainstorm as well. In the future, there will be more sophisti-
cated software-driven market research available in this area. Search technol-
ogy companies like Ask Jeeves Enterprise Solutions are already collecting
data about the hundreds of thousands of customer questions typed into the
search boxes on major corporate sites, for example. This kind of market
research is under used by the vast majority of companies today.

There are currently many low-cost opportunities for pay-per-click advertis-
ers. As more and larger advertisers enter the space, prices will rise, but with
a bit of creativity, granular thinking, and diligent testing, the smaller adver-
tiser will always have a fighting chance on AdWords Select. Good luck!

See Also
* Scraping Google AdWords [Hack #45]

—Andrew Goodman

314 | The Webmaster Side of Google

i

Removing Your Materials from Google ~ #10

Removing Your Materials from Google
How to remove your content from Google’s various web properties.

Some people are more than thrilled to have Google’s properties index their
sites. Other folks don’t want the Google bot anywhere near them. If you fall
into the latter category and the bot’s already done its worst, there are sev-
eral things you can do to remove your materials from Google’s index. Each
of Google’s properties—Web Search, Google Images, and Google Groups—
has its own set of methodologies.

Google’s Web Search

Here are several tips to avoid being listed.

Making sure your pages never get there to begin with. While you can take steps
to remove your content from the Google index after the fact, it’s always
much easier to make sure the content is never found and indexed in the first
place.

Google’s crawler obeys the “robot exclusion protocol,” a set of instructions
you put on your web site that tells the crawler how to behave when it comes
to your content. You can implement these instructions in two ways: via a
META tag that you put on each page (handy when you want to restrict access
to only certain pages or certain types of content) or via a robots.txt file that
you insert in your root directory (handy when you want to block some spi-
ders completely or want to restrict access to kinds or directories of content).
You can get more information about the robots exclusion protocol and how
to implement it at http://www.robotstxt.org/.

Removing your pages after they're indexed. There are several things you can
have removed from Google’s results.

These instructions are for keeping your site out of Google’s
index only. For information on keeping your site out of all
major search engines, you’ll have to work with the robots
exclusion protocol.

Removing the whole site
Use the robots exclusion protocol, probably with robots. txt.
Removing individual pages
Use the following META tag in the HEAD section of each page you want to
remove:
<META NAME="GOOGLEBOT" CONTENT="NOINDEX, NOFOLLOW">

The Webmaster Side of Google | 315

5

- Removing Your Materials from Google

Removing snippets
A “snippet” is the little excerpt of a page that Google displays on its
search result. To remove snippets, use the following META tag in the HEAD
section of each page for which you want to prevent snippets:
<META NAME="GOOGLEBOT" CONTENT="NOSNIPPET">

Removing cached pages
To keep Google from keeping cached versions of your pages in their
index, use the following META tag in the HEAD section of each page for
which you want to prevent caching:

<META NAME="GOOGLEBOT" CONTENT="NOARCHIVE">

Removing that content now. Once you implement these changes, Google will
remove or limit your content according to your META tags and robots.txt file
the next time your web site is crawled, usually within a few weeks. But if
you want your materials removed right away, you can use the automatic
remover at http://services.google.com:8882/urlconsole/controller. You’ll have
to sign in with an account (all an account requires is an email address and a
password). Using the remover, you can request either that Google crawl
your newly created robots.txt file, or you can enter the URL of a page that
contains exclusionary META tags.

- Make sure you have your exclusion tags all set up before you
use this service. Going to all the trouble of getting Google to
pay attention to a robots.txt file or exclusion rules that
you've not yet set up will simply be a waste of your time.

Reporting pages with inappropriate content. You may like your content fine,
but you might find that even if you have filtering activated you're getting
search results with explicit content. Or you might find a site with a mislead-
ing title tag and content completely unrelated to your search.

You have two oprions for reporting these sites to Google. And bear in mind
that there’s no guarantee that Google will remove the sites from the index,
but they will investigate them. At the bottom of each page of search results,
you'll see “Help Us Improve” link; follow it to a form for reporting inappro-
priate sites. You can also send the URL of explict sites that show up on a
SafeSearch but probably shouldn’t to safesearch@google.com. If you have
more general complaints about a search result, you can send an email to
search-quality@google.com.

316 | The Webmaster Side of Google

Removing Your Materials from Google

Google Images

Google Images’ database of materials is separate from that of the main search
index. To remove items from Google Images, you should use robots.txt to
specify that the Google bot Image crawler should stay away from your site.
Add these lines to your robots.txt file:

User-agent: Googlebot-Image

Disallow: /
You can use the automatic remover mentioned in the web search section to
have Google remove the images from its index database quickly.

There may be cases where someone has put images on their server for which
you own copyright. In other words, you don’t have access to their server to
add a robots.txt file, but you need to stop Google’s indexing of your content
there. In this case, you need to contact Google directly. Google has instruc-
tions for situations just like this at http://www.google.com/remove.html; look
at Option 2, “If you do not have any access to the server that hosts your
image.”

Removing Material from Google Groups

Like the Google Web Index, you have the option to both prevent material
from being archived on Google and to remove it after the fact.

Preventing your material from being archived. To prevent your material from
being archived on Google, add the following line to the headers of your
Usenet posts:

X-No-Archive: yes

If you do not have the options to edit the headers of your post, make that
line the first line in your post itself.

Removing materials after the fact. If you want materials removed after the
fact, you have a couple of options:

* If the materials you want removed were posted under an address to
which you still have access, you may use the automatic removal tool
mentioned earlier in this hack.

* If the materials you want removed were posted under an address to
which you no longer have access, you’ll need to send an email to groups-
support@google.com with the following informarion:

The Webmaster Side of Google | 317

AL

Removing Your Materials from Google

— Your full name and contact information, including a verifiable email
address.

— The complete Google Groups URL or message ID for each message
you want removed.

— A statement that says “I swear under penalty of civil or criminal
laws that I am the person who posted each of the foregoing mes-
sages or am authorized to request removal by the person who
posted those messages.”

— Your electronic signature.

Removing Your Listing from Google Phonebook

You may not wish to have your contact information made available via the
phonebook searches on Google. You'll have to follow one of two proce-
dures, depending on whether the listing you want removed is for a business
or for a residential number.

If you want to remove a business phone number, you’ll need to send a
request on your business letterhead to:

Google PhoneBook Removal
2400 Bayshore Parkway
Mountain View, CA 94043

You'll also have to include a phone number where Google can reach you to
verify your request.

If you want to remove a residential phone number, it’s much simpler. You’ll
need to fill out a form at http://www.google.com/help/pbremoval.html. The
form asks for your name, city and state, phone number, email address, and
reason for removal, a multiple choice: incorrect number, privacy issue, or
“other.”

318 | The Webmaster Side of Google

Numbers

26 Steps to 15K a Day (PageRank
guidelines), 298

A

Advanced Froogle Search form, 88
Advanced Groups Search form, 79
advanced search form (see search forms,
advanced)
/advanced switch (Quick Search
Toolbar), 66
AdWords program, 293
AdWords Select, 309
editorial disapproval messages, 313
Interest bar, 120
no Google Web API, 118
scraping, 117-121
affiliate fades, not recommended, 302
AgentWebRanking, violating terms of
service, 111
allintitle: syntax, 27
allinurl: syntax, 27
Allwine, Tim, ix, 121
ALT rags, 308
Amazon API, 226
combined with Google Web
API, 225-228
Anatomy of a Large-Scale Hypertextual
Web Search Engine, The
(paper), 294
antisocial syntaxes, 25
Apache SOAP web site, 161

Index

API (see Google Web API)
Apple Macintosh search, 75
application functionality, 173-268
archives, publications, 53-54
article archives, 53-54
Ask Jeeves Enterprise Solutions, 314
automated queries

database, 110

not recommended, 306
automatic searching, 110
AvaQuest, ix
Ayala, Dietrich, 94

BackRub, original Google name, xvii
bad neighborhoods, 302, 306
Bausch, Paul, x, 206, 225
Benson, Erik, x, 228
Blogger weblog web site, 59, 60
blog*spot weblog web site, 59
Blosxom weblog web site, 60
Book Watch and Book Watch Plus web
site, 225
bookmarklets, 71-72
Bookmarklets for Opera, 72
defined, 71
Dooyoo Bookmarklets, 71
Google Jump, 71
Google Translate!, 71
Googlelt!, 72
Joe Maller’s Translation
Bookmarklets, 72
Mac OS X and, 71

We'd like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

319

Boolean basics, 3
bphonebook: syntax, 25, 43
Brin, Sergey (Google), 294
BSD Unix search, 75

c

C# and .NET and Google Web
API, 166-169

C# Visual Studio .NET web site, 166

cache, blocking Google from
caching, 309

/cache switch (Quick Search
Toolbar), 67

cache: syntax, 6

Cape Clear (see CapeMail, search results
via)

CapeMail, search results via, 102

CapeScience, x

CapeSpeller spellchecker, 178

case sensitivity, 4

catalog search, 75, 87

catalogs (see Google Catalogs)

category list, 13

certifying URLS using
SafeSearch, 255-258

Chan, Antoni, x, 282

Ciampi, Tanya Harvey, x, 49

click-through-rate (CTR), 310

client-side application, date range
search, 174-178

cloaking web sites, 305

company information, through stock
symbol, 48

comparing Google results with other
search engines, 251-254

content creation, date of, 36

cookies turned off and preferences, 11

copyright disclaimers, 53

Crimson XML parser web site, 161

cross links, 300

date range
custom search form, 111
Julian dates, 6
queries, 174
searching, 34-37
with a client-side
application, 174-178

Timely Google box application, 211
tracking results over time, 183-187
daterange: syntax, 6,34
Gregorian dates, 37
Julian dates, 35, 37
use in Perl, 37
dates
content creation, 36
formats, 36
Gregorian (see Gregorian dates)
Julian (see Julian dates)
searching, 32
in Google Groups, 79
Dave’s Quick Search Toolbar (see Quick
Search Toolbar)
Daypop, source of Google Web API
applications, 174
developer’s key, 134
using, 135
dictionary, 42
Dictionary of Slang web site, 16
Dictionary.com, 42
directories, 54-56
directory search, 76-78
/directory switch (Quick Search
Toolbar), 66
distance ranking, 223
DMOZ (see Open Directory Project)
.doc files, searching for, 7
doGetCachedPage method, 94, 97
doGoogleSearch method, 94, 96
doGoogleSpellingSuggestion
method, 94, 97
domain names, brandable, 298
doorway pages
explained, 306
not recommended, 306
Dooyoo bookmarklets, 71
Drayton, Peter, x
dynamic pages, 309

E

editorial disapproval messages, 313

email, Google search results by, 102

Excel filetype, 73

experimental features, in Google
Toolbar, 63

320 | Index

F

FaganFinder customized search

form, 33 .
family-friendly (see SafeSearch
application)

FAST News Search web site, 86
filetype: syntax, 7
filetype variable, 31
filetypes
Microsoft Excel, 73
Microsoft PowerPoint, 73
Microsoft Word, 73
mixing example, 32
PDF, 73
Postscript, 73
Rich Text Format (RTF), 73
filtering (see SafeSearch application)
Flegg, Andrew, xi, 103
Fool.com web site, 46
forums, 303
frames, 309
Froogle, 88
adding a merchant, 89
Advanced Froogle Search form, 88
no Google Web API, 89
syntaxes, 89
full-text search, 3

G

games and pranks, 269-286
gaming, using Google Groups, 81
GAPIS (Google Web API Searching In an
Application), 68
GAPS proximity application, 222-225
web site, 224
gateway pages, not recommended, 306
geek index, 221
Geeklog weblog web site, 60
glossaries (see slang; vocabularies)
Glossarist web site, 17
Gnews2RSS, violating terms of
services, 110
Goldilocks method, for ad
performance, 312
Goodman, Andrew, xi, 314
Google
applications, non-API, 108-132
history, xix

Microsoft Word dictionaries
and, 178
play on googol, xvii
Google AdWords (see AdWords
program)
Google Answers, 74
Google Art Creator web site, 278
Google Art game, 277
Google Bounce game, 279-282
Google Box application, 207-210
Google Cartalogs, 75, 87
Advanced Catalog Search form, 87
no Google Web API, 88
scraping, 128-130
Google Compare application, 251-254
Google Directory, 13, 76-78
no Google Web API, 78
Open Directory Project, 14
PageRank, 76
recipes, 285
source of Google Web API
applications, 174
syntaxes, 77
Google Froogle (see Froogle)
Google Glossary, 57
Google Groups, 13, 78-82
Advanced Groups Search form, 79
browsing, 79
date searching, 79
no Google Web API, 82
reducing URL size, 103-105
removing posts, 317
scraping, 121-124
use for gaming, 81
use for news commentary, 81
use for tech support, 81
Google Images, 13, 82-84
Advanced Image Search form, 83
domain, 83
filetype, 83
filtering, 83
image color, 83
image size, 83
no Google Web API, 84
syntaxes, 84
Google Jump bookmarklet, 71
Google Keyboard Shortcuts, 90
Google Labs, 57,75, 89
no Google Web API, 91
Google Mindshare application, 249
Google Mirror prank web site, 282

Index | 321

Google Neighborhood

application, 192-199

Google Neighborhood web site, 192
Google News, 84-86
clustering, special feature, 85
no Google Web API, 86
other news web sites, 86
scraping, 125-128
sorting by relevance or date, 85
syntaxes, 85
Google Phonebook (see Phonebook

application)

Google recipe game, 284-286
Google Sets (of phrases), 90
Google site submission page, 290
Google Smackdown

application, 199-206

web site, 206

Google Toolbar, 61, 63
download, 61
experimental features, 63
features, 61
Mozilla Googlebar, 6364
PageRank, 61
with Mozilla and Netscape

browsers, 63

Google Topic Search

application, 259-261

Google Translate! bookmarklet, 71
Google Viewer results slideshow, 91
Google Voice Search, 90
Google Web API, 133-172

Amazon API combined

with, 225-228

applications, 173-268

finding more, 174

Daypop and, 174

defined, 133

developer’s key, 134
developer’s kit web site, 135
looping beyond the 10-result

limit, 144-146

methods

doGetCachedPage, 94, 97

doGoogleSearch, 94, 96

doGoogleSpellingSuggestion, 94,
97

programming with

C# and .NET, 166-169
Java, 161
Perl, 142-144

PHP, 159
Python, 163-165
VB .NET, 169-172
XML, 93-102
query, 136-140
country and topic
restrictions, 139
filter option, 137
guidelines, 139
ie value, 138
key value, 137
Ir option, 138
maxResults value, 137
oe value, 138
query values, 137
restrict option, 137
safeSearch option, 138
start value, 137
response, 140-142
guidelines, 141
results, 141
SOAP::Lite Perl module, 146-149
syntaxes, supported, 141
versus scraping, 108
web site, 133
Google Web API Proximity Search
(GAPS) (see GAPS proximity
application)
Google Web API Relation Browsing
Outliner (GARBQ) web
site, 224
Google Web API Web Search by Host
(GAWSH) web site, 224
Google WebQuotes page preview, 90
Google Zeitgeist web site, 245
Google2RSS application, 258
GoogleAPL.pm module, 227
Googlebombing (for false results), 269
Googlelt! bookmarklet, 72
Googlematic messaging
application, 265
GooglePeople web site (people
search), 106
Google whacking, 271
‘Whack Stack web site, 271
Googlism web site
fun, 105
practical application, 106
googol, xvii
GooPoetry game, 273-277

322

Index

Gossamer Threads directory web
site, 56
government and military search, 75
Gregorian dates, 37
in Google Groups, 80
versus Julian dates, 6
Greymatter weblog web site, 60
/groups switch (Quick Search
Toolbar), 66

hacking
Google URLs, 29-30
search forms, 31-33
Hemenway, Kevin, xii
hidden variables, 31
highlighting, in Google Toolbar, 61
history of Google, xvii
hl (language interface), 30
Hoovers web site, 47
Horrell, Mark, xi, 297
Hourihan, Judy, xi, 286
HTML 3.2 recommended, 298
HTML files, accessing data (see
scraping)
Huevos, Mac search widget web site, 68

I Feel Lucky application, 214
Iff, Morbus, xii, 254
/ifl switch (Quick Search Toolbar), 66
I’'m Feeling Lucky button, 4
image search, 82-84
Advanced Image Search form, 83
/images switch (Quick Search
Toolbar), 66
inanchor: syntax, 5
index size, 73
indexer, 290
info: syntax, 7
instant messaging application, 265
interface language, 12
interface tinkering, 92
intext: syntax, 5
intitle: syntax, 5,27, 28, 55
in Google Directory, 77
inurl: syntax, 5,27, 28
in Google Directory, 77
to search subdirectories, 39
versus site: syntax, 38

J

Java 2 Platform download, 161

Java and Google Web API, 161

Joe Maller’s Translation
Bookmarklets, 72

Johnson, Steven, xi, 249

Julian dates, 6, 35, 37

Julian Day Perl module, 175

K

keyboard shortcuts, 90
keyword stuffing, not
recommended, 306
keywords
best placement on web page, 291
density and positioning, 299
guidelines, 22
repetition, 22
research, Wordtracker, 314

L
Langridge, Stuart, xi
language

industry vocabulary, 16

interface, 12

machine translation, 12

slang (see slang)

specialized vocabulary (see

vocabularies)

tools, 11-13

translaring, 11

using to narrow search, 12
Largest Page application, 262
Law.com Legal Dictionary web site, 18
Lebens, Beau, xii, 102
legal issues (see Terms of Service)
limits

ten query words, 19

using wildcards to bypass, 19
link farms, not recommended, 306
/link switch (Quick Search Toolbar), 67
link: syntax, 6,25
linkbacks, 302
links

cross links, 300

outbound, 300Linux search, 75
LiveJournal weblog web site, 60

location switches (Quick Search
Toolbar), 67

logger/trackers, 301

logs, 303

magazine articles, searching, 54
MakeAShorterLink web site, 104
Manila weblog web site, 60
maximum query words, 4
medical terms, 42
MedTerms.com web site, 18
merchants, adding to Google Froogle
product search, 89
metadata, 15
meta-tags, 308
methods (see Google Web API,
methods)
Microsoft search, 75
Microsoft Word dictionaries, 178
mindshare application, 249
misspellings, 40
mixing hidden filetypes, 32
mixing special syntaxes, 25-29
how not to mix, 26
Movable Type
Google box, 208
weblog web site, 59
Mozilla and Google Toolbar, 63
Mozilla Googlebar, 63—64
MSN MoneyCentral web site, 46
myths about Google, 1

NCSA SSI Tutorial web site, 210
neighborhood application, 192-199
web site, 192
.NET Framework download, 166
Netlingo glossary web site, 58
Netscape and Google Toolbar, 63
news search
using Google Groups, 81
(see also Google News)
/news switch (Quick Search
Toolbar), 67
non-API applications, 108-132
Northern Light News Search web
site, 86

NoXML, SOAP::Lite
alternative, 154-159
num (number of results), 29
number of results, setting in search
form, 32
NYTimes.com, 53

0

OneLook dictionary web site, 42
On-Line Medical Dictionary web
site, 18
Open Directory Project
(ODP), 113-115, 304
Google Directory and, 300
opinion search, 105
OR syntax, 3
phonebook: syntax and, 45
pipe character, 27
outbound links, 300

P

page content, 299
page design, 307-309
Page, Larry (Google), 294
page size, 299
PageRank
algorithm, 294, 295
calculator, 296
web site, 297
in Google Directory, 76
visible in Google Toolbar, 61
webmaster guidelines, 298
webmasters and, 288
.pdf files, 73
.pdf files, searching for, 7
people search, GooglePeople, 106
Perl
Google Web APl and, 142-144
SOAP::Lite module, 146-149
alternatives, 149
permuting query words, 179-183
Phone Book Servers web site, 46
Phonebook application, 43-46,
217-222
removing listing, 318

324 | Index

scraping, 130-132
(see also phonebook: syntax)
Phonebook Gateway web site, 46
phonebook: syntax, 7,25, 43
business listings, 43
guidelines, 45
OR syntax and, 45
residential listings, 43
reverse lookup, 45
search for institutions, 46
(see also Phonebook application)
PHP and Google Web API, 159
Pilgrim, Mark, xiv, 163, 199
pipe character (see OR syntax), 27
Pitas weblog web site, 60
pMachine weblog web site, 60
popularity contest application, 199-206
Postscript filetype, 73
PowerPoint filetype, 73
PoXML, SOAP::Lite
alternative, 150-154
.ppt files, searching for, 7
pranks and games, 269-286
bogus date range, 270
Google Art game, 277
Google Bounce random search
game, 279-282
Google Mirror prank web site, 282
Google recipe game, 284-286
Google whacking (two-word
game), 271
GooPoetry game, 273-277
no-results prank, 269
preferences
cookies turned off, 11
filtering, 10
language, 9
number of results, 10
setting, 9-11
Probert Encyclopedia, web site for
slang, 16
product search, 88
browsing, 88
searching, 88
Programming Perl web site, 173
proximity searches, 222
PyGoogle, 165
Python, Google Web API and, 163-165
Python web site, 192

Q
queries
automated, 110
Google Web API (see Google Web
API, query)
switches in Quick Search
Toolbar, 66
triggers in Quick Search Toolbar, 66
query words
adjacency, 21
favor obscure keywords, 19
guidelines, 22
limit, 19
maximum, 4
permuting, 179-183
popularity comparsion
application, 199-206
proximity application
(GAPS), 222-225
repetition, 22
stop words, 20
tracking popularity, 183-187
using wildcards, 19
weight, 21
wildcards and, 38
word order, 20
Quick Search Toolbar, 64-68
switches, 66
location, 67
triggers, 66
Quicken web site, 46

Radio Userland

Google box, 208

weblog web site, 59
random results application, 228-231
Random Yahoo! Link web site, 228
ranking

algorithm, 288

automated check of, 111

distance, 223

page, 182

(see also PageRank), 288

web site traffic and, 304
recipe web sites (Google Directory), 285
recipes (Google recipe games), 284-286

referral logs, 303
/related switch (Quick Search
Toolbar), 67
related: syntax, 7
removing
inappropriate content from
Google, 316
items from Google Images, 317
listing from Google Phonebook, 318
material from Google, 315-318
posts from Google Groups, 317
web pages from Google, 315
repetition
examples, 23
guidelines, 25
of keywords, 22
Representational State Transfer (REST),
defined, 93
ResearchBuzz.com, 28
resources, WebmasterWorld web
site, 289
results, search
by email, 102
extending limits, 144—146
Google Box application, 207-210
in XML, 93-102
interpreting, 13
scraping, 26, 115-117
slideshow, 91
Timely Google Box
application, 210-214
tracking results counts over
time, 183-187
visual display
(TouchGraph), 187-191
when building your own
applications, 140
reverse phonebook lookup, 45
Rich Text Format (RTF) filetype, 73
robots, 290
robots.txt file, 309
robots.txt web site, 309
robots exclusion protocol web site, 315
Rocketinfo news web site, 86
rphonebook: syntax, 25, 43
RSS application, 258

S

safe results filter, 30
SafeSearch application, 255-258
filter, 10, 30
when building your own
applications, 140
scraping
advantages, 109
AdWords program, 117-121
automated, 109
controversy, 245
defined, 108
Google Catalogs, 128-130
Google Groups results, 121-124
Google News, 125-128
Google Phonebook, 130-132
limitations, 109
search results, 26, 115-117
versus Google Web API, 108
Yahoo! Buzz application, 245-248
scraping application, 245-248
search engine basics, 290
search engine games, 269
search engine optimization
(SEQ), 287-318
template, 291
Search Engines and Frames web
site, 309
search forms
advanced, 8-9
date, 9
file format, 8
filtering, 8
language, 8
query word input, 8
building custom date range
form, 111
creating your own, 33
customized FaganFinder search, 33
date searching, 32
hacking, 31-33
hidden variables, 31
setting number of results, 32
variables
filetype, 31
site search, 32
search results (see results, search)

326 | Index

search types
catalogs (see Google Cartalogs)
date range, 174-178 e

date search (see dates, searching; date

range, searching)
image (see image search)
news (see Google News)
people, 106
special character, 236-238
topic search, 259-261
searchable subject index, 3
searching
automated, 110
deeper in site hierarchy
application, 238-241
Sells, Chris, xii, 169
Server Side Includes, 210
Shapiro, Alex, xii, 191
Shay, Kevin, xiii, 222
shopping, 87, 88
Shorl web site, 105
shortcuts, keyboard, 90
Simple Object Access Protocol (see
SOAP)
/since:days switch (Quick Search
Toolbar), 67
site design, 298, 307-309
site search variable, 32
site submission form, 304
site: syntax, 6, 26, 28
versus inurl: syntax, 38
slang, 15-18
Dictionary of Slang web site, 16
industry vocabulary, 16
Probert Encyclopedia web site, 16
specialized vocabulary, 15
Surfing for Slang web site, 16
(see also vocabularies)
slideshow, of search results, 91
Smackdown, 199-206

SOAP
defined, 93
NuSOAP, 94

web site, 159
SOAP::Lite, 100-102
installing, 147
SOAP::Lite Perl module, 146-149
alternatives, 149
NoXML, 154-159
PoXML, 150-154
SOAPLite.com, 147

Soapware.org Google Web API
applications, 174
spamreport web site, 307
special character search
application, 236-238
special services and collections, 73-91
special syntaxes (see syntaxes, special)
specialized vocabularies (see
vocabularies, specialized)
spelling check, 4041
CapeSpeller, 178
Dictionary.com and, 42
embracing misspellings and, 40
spider, 290
sponsored links, 13
Staggernation web sites, 224
stemming, 37
supported with asterisk, 4
unsupported, 4
Stock, Gary, xiii, 271
stock symbols, for tracking company
information, 48
stocks: syntax, 25, 46-49
Yahoo! Finance and, 47
stop words, 20
subdirectories, searching with inurl:
syntax, 39
subdomains, getting information
about, 39
subject indexes, 56
subject search, 76-78
submitting site to Google, 290
suffix census, 241
Sullivan, Danny (Search Engine
Warch), 309
summarize results by domain
application, 241-245
Surfing for Slang web site, 16
switches (query) in Quick Search
Toolbar, 66
syntaxes
antisocial, 25
bphonebook:, 25
daterange:, 34
Google Directory
intitle:, 77
inurl:, 77
Google Froogle
intext:, 89
intitle:, 89
OR, 89

syntaxes (continued)
Google Groups, 80
author:, 80
group:, 80
intitle:, 80
mixing, 80
Google Images
filetype:, 84
intitle:, 84
inurl:, 84
site:, 84
Google News
intitle:, 85
site:, 85
how not to mix, 26
how to mix, 28
link:, 25
mixing, 25-29
OR, 27
phonebook:, 25
rphonebook:, 25
site:, 26
special, 2, 4
cache:, 6
daterange:, 6
filetype:, 7
inanchor:, 5
info:, 7
intext:, 5
intitle: (see intitle: syntax)
inurl: (see inurl: syntax)
link: (see link: syntax)
phonebook: (see phonebook:
syntax)
related:, 7
site: (see site: syntax)
stocks:, 25
supported in API, 141

T

Tabke, Brett, xiii, 292
tabs
Google Directory, 13, 76-78
Google Groups, 13, 78-82
Google Images, 13, 82-84
Google News, 84-86
Tech Encyclopedia web site, 59
tech support using Google Groups, 81

technical terms, 42
technical vocabularies (see vocabularies,
technical)
terminology (see vocabularies)
Terms of Service (TOS), xvii, 92
violations, 110, 125, 307
Terms of Services (TOS)
web site, 134
third-party services, 92—-107
Timely Google Box
application, 210-214
TinyURL web site, 104
title stacking, not recommended, 306
titles, intitle: syntax, 55
toolbars
Google Toolbar (see Google Toolbar)
Morzilla Googlebar, 63-64
Quick Search, 64-68
topic search application, 259-261
topic-specific search
Apple Macintosh, 75
BSD Unix, 75
catalogs, 75
Linux, 75
Microsoft, 75
Uncle Sam
(government/military), 75
universities, 75
top-level results application, 231-235
TouchGraph Google Browser, 187-191
web site, 191
tracking query word
popularity, 183-187
translating, 11, 49-53
glossaries and, 49
machine translation, 12
triggers (query) in Quick Search
Toolbar, 66

U

uJournal weblog web site, 60
universities search, 75
university phonebook search, 46
up directory, in Google Toolbar, 61
Urban Legends Reference Pages web
site, 1
URL hacking
Advanced Catalog Search form, 87
Advanced Groups Search form, 79

328 | Index

URLs
as_qdr (age of results), 30
building Google Directory, 113-115
hacking, 29-30
hl (language interface), 30
num (number of results), 29
reducing size, 103-105
MakeAShorterLink, 104
Shorl, 105
TinyURL, 104
safe (filter), 30
Usenert archive (see Google Groups)
user agents, 305

vV

variables, hidden, 31
VB .NET and Google Web
API, 169-172
virtual hosting, not recommended, 300
visual display of search results
(TouchGraph), 187-191
vocabularies, 15-18
Google Glossary, 57, 90
medical, 42
specialized, 15-18
Law.com Legal Dictionary web
site, 18
legal and medical, 17
MedTerms.com web site, 18
On-Line Medical Dictionary web
site, 18
technical, 42, 56-59
translating and, 49
(see also slang)
voice search, 90, 93

W

Web Robots Database web site, 305
Web Services Description Language
(WSDL), 136
Webb, Matt, xiii, 268
weblogs, 59-61
web sites
Blogger, 60
blog*spot, 59
Blosxom, 60

Geeklog, 60
Greymatter, 60
LiveJournal, 60
Manila, 60
Movable Type, 59
Pitas, 60
pMachine, 60
Radio Userland, 59
uJournal, 60
webmasters and Google, 287-318
WebmasterWorld web site, 289
Webopedia encyclopedia web site, 58
WebPosition Gold, violating terms of
services, 110
Whack Stack Google whacking web
site, 271
Whatis subject web site, 58
WhitePages.com, 46
wildcards, 55
defined, 37
full-word, 19 _
query word limit and, 38
stop words and, 20
Word filetype, 73
word order, 20
examples, 20
Wordtracker web site, for keyword
research, 314
WSDL, defined, 136
WWW Search Interfaces for Translators
web site, 49

X

Xls files, searching for, 7
XML, search results in, 93-102
XooMLe, 93-102

error messages, 99

SOAP::Lite substitute, 100-102

Y

Yahoo! Buzz, scraping, 245-248
Yahoo! Buzz web site, 245

Yahoo! Daily News web site, 86
Yahoo! Finance web site, 46, 47

Index | 329

Colophon

Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The tool on the cover of Google Hacks is a pair of locking pliers. Locking
pliers are very versatile tools. They can be used for turning, twisting, cutting
wire, tightening screws and bolts, and clamping. Locking pliers are specially
designed to put pressure on a bolt or nut in such a way that the user can
approach the nut or bolt from any angle. A simple squeeze can put up to a
ton of pressure between the pliers’ jaws, enabling them to lock onto even
odd-shaped pieces. Locking pliers include a guarded release, which prevents
accidental release or pinching, and a trigger, which unlocks the pliers.

Linley Dolby was the production editor and copyeditor for Google Hacks.
Sarah Sherman was the proofreader. Emily Quill and Claire Cloutier
provided quality control. Reg Aubry wrote the index.

Edie Freedman designed the cover of this book. The cover image is an orig-
inal photograph by Edie Freedman. Emma Colby produced the cover layout
with QuarkXPress 4.1 using Adobe’s Helvetica Neue and ITC Garamond
fonts.

David Futato designed the interior layout. This book was converted by Mike
Sierra to FrameMaker 5.5.6 with a format conversion tool created by Erik
Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe
Helvetica Neue Condensed; and the code font is LucasFont’s TheSans
Mono Condensed. The illustrations that appear in the book were produced
by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. This colophon was written by Linley Dolby.

Web

GOOGLE HACKS 100 Industrial-Strength Tips & Tools

Everybody knows that Google is the ultimate research
tool—a search engine that indexes more than 2.4 billion web
pages. But there’s more to Google than most people know.
Google is a powerful and highly customizable user interface
for tapping the resources of the Internet. Google Hacks explores this unique
interface, demonstrating clever ways to perform a wide variety of tasks
using Google. Google also has a programming interface (API), which even

non-programmers can use to automate complicated or repetitive tasks.

Google Hacks is a collection of 100 tips and tools gathered from expert

users of Google, as well as developers who are excited by Google's new

API. Each hack can be read in just a few minutes, but can save hours of

searching for answers. There are dozens of scripts that you can customize

to write your own Google applications. You'll be amazed, if not amused,

by what you can do in Google.

e Use special syntaxes in Google's search box to filter results

* Explore Google's special services: the Google Directory, Google
Images, Google News, Google Groups, Google Catalogs, Froogle, and
other interesting experiments from Google Labs

* Improve your own web site or weblog by integrating Google applications

e Write information retrieval programs that use the Google Web API in
Java, Perl, PHP, Python, and .NET

* Enjoy unusual games built on top of Google's huge database

¢ Gain a clear understanding of how Google looks at your site and learn
more about Google's famous PageRank algorithm

“Hacking is the creativity that fuels the Web. As software developers ourselves,
we applaud this book for its adventurous spirit. We're adventurous too, and
we're happy to discover that this book highlights many of the same experiments
we conduct on our free time here at Google.”

—Google Engineering Team
US $24.95 Visit 0'Reilly on the Web at
1SBN 0-596-00447-8 CAN $38.95 www.oreilly.com

20000 Gotta Hack? Go to:
9 1780596"00447 I J‘ .

sszoronsaril s O’REILLY®

[

	Cover
	Contents
	Preface
	01 Searching Google
	02 Special Services & Collections
	03 Third-Party Google Services
	04 Non-API Google Applications
	05 Intro to Google Web API
	06 Google Web API Apps
	07 Google Pranks & Games
	08 The Webmaster Side Of Google
	INDEX

